These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 38491621)

  • 1. Transverse emittance growth of proton sources from laser-irradiated sub-μm-thin planar targets.
    Rösch TF; Afshari M; Balling F; Doyle L; Gerlach S; Hartmann J; Prasselsperger A; Morris S; Schreiber J
    Phys Rev E; 2024 Feb; 109(2-2):025201. PubMed ID: 38491621
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultralow emittance, multi-MeV proton beams from a laser virtual-cathode plasma accelerator.
    Cowan TE; Fuchs J; Ruhl H; Kemp A; Audebert P; Roth M; Stephens R; Barton I; Blazevic A; Brambrink E; Cobble J; Fernández J; Gauthier JC; Geissel M; Hegelich M; Kaae J; Karsch S; Le Sage GP; Letzring S; Manclossi M; Meyroneinc S; Newkirk A; Pépin H; Renard-LeGalloudec N
    Phys Rev Lett; 2004 May; 92(20):204801. PubMed ID: 15169357
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Maximum Proton Energy above 85 MeV from the Relativistic Interaction of Laser Pulses with Micrometer Thick CH_{2} Targets.
    Wagner F; Deppert O; Brabetz C; Fiala P; Kleinschmidt A; Poth P; Schanz VA; Tebartz A; Zielbauer B; Roth M; Stöhlker T; Bagnoud V
    Phys Rev Lett; 2016 May; 116(20):205002. PubMed ID: 27258872
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Amplification of Relativistic Electron Bunches by Acceleration in Laser Fields.
    Braenzel J; Andreev AA; Abicht F; Ehrentraut L; Platonov K; Schnürer M
    Phys Rev Lett; 2017 Jan; 118(1):014801. PubMed ID: 28106423
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Emittance growth mechanisms for laser-accelerated proton beams.
    Kemp AJ; Fuchs J; Sentoku Y; Sotnikov V; Bakeman M; Antici P; Cowan TE
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 May; 75(5 Pt 2):056401. PubMed ID: 17677176
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Laser-driven proton acceleration enhancement by nanostructured foils.
    Margarone D; Klimo O; Kim IJ; Prokůpek J; Limpouch J; Jeong TM; Mocek T; Pšikal J; Kim HT; Proška J; Nam KH; Stolcová L; Choi IW; Lee SK; Sung JH; Yu TJ; Korn G
    Phys Rev Lett; 2012 Dec; 109(23):234801. PubMed ID: 23368211
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-organizing GeV, nanocoulomb, collimated proton beam from laser foil interaction at 7 x 10;{21} W/cm;{2}.
    Yan XQ; Wu HC; Sheng ZM; Chen JE; Meyer-Ter-Vehn J
    Phys Rev Lett; 2009 Sep; 103(13):135001. PubMed ID: 19905516
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accelerating protons to therapeutic energies with ultraintense, ultraclean, and ultrashort laser pulses.
    Bulanov SS; Brantov A; Bychenkov VY; Chvykov V; Kalinchenko G; Matsuoka T; Rousseau P; Reed S; Yanovsky V; Krushelnick K; Litzenberg DW; Maksimchuk A
    Med Phys; 2008 May; 35(5):1770-6. PubMed ID: 18561651
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancement of proton acceleration by hot-electron recirculation in thin foils irradiated by ultraintense laser pulses.
    Mackinnon AJ; Sentoku Y; Patel PK; Price DW; Hatchett S; Key MH; Andersen C; Snavely R; Freeman RR
    Phys Rev Lett; 2002 May; 88(21):215006. PubMed ID: 12059483
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ion acceleration from microstructured targets irradiated by high-intensity picosecond laser pulses.
    Bailly-Grandvaux M; Kawahito D; McGuffey C; Strehlow J; Edghill B; Wei MS; Alexander N; Haid A; Brabetz C; Bagnoud V; Hollinger R; Capeluto MG; Rocca JJ; Beg FN
    Phys Rev E; 2020 Aug; 102(2-1):021201. PubMed ID: 32942368
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Radiation-pressure acceleration of ion beams from nanofoil targets: the leaky light-sail regime.
    Qiao B; Zepf M; Borghesi M; Dromey B; Geissler M; Karmakar A; Gibbon P
    Phys Rev Lett; 2010 Oct; 105(15):155002. PubMed ID: 21230914
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multi-MeV proton source investigations in ultraintense laser-foil interactions.
    Borghesi M; Mackinnon AJ; Campbell DH; Hicks DG; Kar S; Patel PK; Price D; Romagnani L; Schiavi A; Willi O
    Phys Rev Lett; 2004 Feb; 92(5):055003. PubMed ID: 14995317
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Magnetic field generation by the Rayleigh-Taylor instability in laser-driven planar plastic targets.
    Gao L; Nilson PM; Igumenschev IV; Hu SX; Davies JR; Stoeckl C; Haines MG; Froula DH; Betti R; Meyerhofer DD
    Phys Rev Lett; 2012 Sep; 109(11):115001. PubMed ID: 23005637
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-energy proton generation and suppression of transverse proton divergence by localized electrons in a laser-foil interaction.
    Miyazaki S; Kawata S; Sonobe R; Kikuchi T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 May; 71(5 Pt 2):056403. PubMed ID: 16089656
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polarization Dependence of Bulk Ion Acceleration from Ultrathin Foils Irradiated by High-Intensity Ultrashort Laser Pulses.
    Scullion C; Doria D; Romagnani L; Sgattoni A; Naughton K; Symes DR; McKenna P; Macchi A; Zepf M; Kar S; Borghesi M
    Phys Rev Lett; 2017 Aug; 119(5):054801. PubMed ID: 28949740
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quasimonoenergetic proton bunch generation by dual-peaked electrostatic-field acceleration in foils irradiated by an intense linearly polarized laser.
    Zhuo HB; Chen ZL; Yu W; Sheng ZM; Yu MY; Jin Z; Kodama R
    Phys Rev Lett; 2010 Aug; 105(6):065003. PubMed ID: 20867985
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proton beam quality enhancement by spectral phase control of a PW-class laser system.
    Ziegler T; Albach D; Bernert C; Bock S; Brack FE; Cowan TE; Dover NP; Garten M; Gaus L; Gebhardt R; Goethel I; Helbig U; Irman A; Kiriyama H; Kluge T; Kon A; Kraft S; Kroll F; Loeser M; Metzkes-Ng J; Nishiuchi M; Obst-Huebl L; Püschel T; Rehwald M; Schlenvoigt HP; Schramm U; Zeil K
    Sci Rep; 2021 Apr; 11(1):7338. PubMed ID: 33795713
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An initial systematic study of the linear energy transfer distributions of a proton beam under a transverse magnetic field.
    Fujii Y; Ueda H; Umegaki K; Matsuura T
    Med Phys; 2022 Mar; 49(3):1839-1852. PubMed ID: 35124798
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coulomb-driven energy boost of heavy ions for laser-plasma acceleration.
    Braenzel J; Andreev AA; Platonov K; Klingsporn M; Ehrentraut L; Sandner W; Schnürer M
    Phys Rev Lett; 2015 Mar; 114(12):124801. PubMed ID: 25860747
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of target material in proton acceleration from thin foils irradiated by ultrashort laser pulses.
    Tayyab M; Bagchi S; Ramakrishna B; Mandal T; Upadhyay A; Ramis R; Chakera JA; Naik PA; Gupta PD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug; 90(2):023103. PubMed ID: 25215835
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.