These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 38491636)
1. Effect of adaptation functions and multilayer topology on synchronization. Biswas D; Gupta S Phys Rev E; 2024 Feb; 109(2-1):024221. PubMed ID: 38491636 [TBL] [Abstract][Full Text] [Related]
2. Synchronization transitions in adaptive Kuramoto-Sakaguchi oscillators with higher-order interactions. Sharma A; Rajwani P; Jalan S Chaos; 2024 Aug; 34(8):. PubMed ID: 39213012 [TBL] [Abstract][Full Text] [Related]
3. Dynamics of the generalized Kuramoto model with nonlinear coupling: Bifurcation and stability. Zou W; Wang J Phys Rev E; 2020 Jul; 102(1-1):012219. PubMed ID: 32794968 [TBL] [Abstract][Full Text] [Related]
4. Tiered synchronization in Kuramoto oscillators with adaptive higher-order interactions. Rajwani P; Suman A; Jalan S Chaos; 2023 Jun; 33(6):. PubMed ID: 37276556 [TBL] [Abstract][Full Text] [Related]
5. Ott-Antonsen ansatz for the D-dimensional Kuramoto model: A constructive approach. Barioni AED; de Aguiar MAM Chaos; 2021 Nov; 31(11):113141. PubMed ID: 34881619 [TBL] [Abstract][Full Text] [Related]
6. Impact of phase lag on synchronization in frustrated Kuramoto model with higher-order interactions. Dutta S; Mondal A; Kundu P; Khanra P; Pal P; Hens C Phys Rev E; 2023 Sep; 108(3-1):034208. PubMed ID: 37849147 [TBL] [Abstract][Full Text] [Related]
7. Diversity of dynamical behaviors due to initial conditions: Extension of the Ott-Antonsen ansatz for identical Kuramoto-Sakaguchi phase oscillators. Ichiki A; Okumura K Phys Rev E; 2020 Feb; 101(2-1):022211. PubMed ID: 32168625 [TBL] [Abstract][Full Text] [Related]
8. Rotating clusters in phase-lagged Kuramoto oscillators with higher-order interactions. Moyal B; Rajwani P; Dutta S; Jalan S Phys Rev E; 2024 Mar; 109(3-1):034211. PubMed ID: 38632814 [TBL] [Abstract][Full Text] [Related]
9. Optimal synchronization of Kuramoto oscillators: A dimensional reduction approach. Pinto RS; Saa A Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Dec; 92(6):062801. PubMed ID: 26764738 [TBL] [Abstract][Full Text] [Related]
10. Phase transitions in an adaptive network with the global order parameter adaptation. Manoranjani M; Saiprasad VR; Gopal R; Senthilkumar DV; Chandrasekar VK Phys Rev E; 2023 Oct; 108(4-1):044307. PubMed ID: 37978685 [TBL] [Abstract][Full Text] [Related]
11. Matrix coupling and generalized frustration in Kuramoto oscillators. Buzanello GL; Barioni AED; de Aguiar MAM Chaos; 2022 Sep; 32(9):093130. PubMed ID: 36182358 [TBL] [Abstract][Full Text] [Related]
12. Synchronization onset for contrarians with higher-order interactions in multilayer systems. Rathore V; Suman A; Jalan S Chaos; 2023 Sep; 33(9):. PubMed ID: 37729103 [TBL] [Abstract][Full Text] [Related]
13. Synchronization transitions and sensitivity to asymmetry in the bimodal Kuramoto systems with Cauchy noise. Kostin VA; Munyaev VO; Osipov GV; Smirnov LA Chaos; 2023 Aug; 33(8):. PubMed ID: 38060795 [TBL] [Abstract][Full Text] [Related]
14. Low-dimensional behavior of Kuramoto model with inertia in complex networks. Ji P; Peron TK; Rodrigues FA; Kurths J Sci Rep; 2014 May; 4():4783. PubMed ID: 24786680 [TBL] [Abstract][Full Text] [Related]
15. Synchronization scenarios in the Winfree model of coupled oscillators. Gallego R; Montbrió E; Pazó D Phys Rev E; 2017 Oct; 96(4-1):042208. PubMed ID: 29347589 [TBL] [Abstract][Full Text] [Related]
16. Asymmetric couplings enhance the transition from chimera state to synchronization. Tian C; Bi H; Zhang X; Guan S; Liu Z Phys Rev E; 2017 Nov; 96(5-1):052209. PubMed ID: 29347748 [TBL] [Abstract][Full Text] [Related]
17. The study of the dynamics of the order parameter of coupled oscillators in the Ott-Antonsen scheme for generic frequency distributions. Campa A Chaos; 2022 Aug; 32(8):083104. PubMed ID: 36049926 [TBL] [Abstract][Full Text] [Related]
18. Resonance-induced synchronization in coupled phase oscillators with bimodal frequency distribution and periodic coupling. Li S; Wang X Phys Rev E; 2024 Aug; 110(2-1):024219. PubMed ID: 39295012 [TBL] [Abstract][Full Text] [Related]
20. The asymptotic behavior of the order parameter for the infinite-N Kuramoto model. Mirollo RE Chaos; 2012 Dec; 22(4):043118. PubMed ID: 23278053 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]