These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 38491656)

  • 1. Intracellular ion accumulation in the genesis of complex action potential dynamics under cardiac diseases.
    Wang X; Landaw J; Qu Z
    Phys Rev E; 2024 Feb; 109(2-1):024410. PubMed ID: 38491656
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bifurcations Caused by Feedback between Voltage and Intracellular Ion Concentrations in Ventricular Myocytes.
    Landaw J; Qu Z
    Phys Rev Lett; 2019 Nov; 123(21):218101. PubMed ID: 31809131
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Memory-induced nonlinear dynamics of excitation in cardiac diseases.
    Landaw J; Qu Z
    Phys Rev E; 2018 Apr; 97(4-1):042414. PubMed ID: 29758700
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nonlinear dynamics of cardiac excitation-contraction coupling: an iterated map study.
    Qu Z; Shiferaw Y; Weiss JN
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jan; 75(1 Pt 1):011927. PubMed ID: 17358204
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamical mechanisms of phase-2 early afterdepolarizations in human ventricular myocytes: insights from bifurcation analyses of two mathematical models.
    Kurata Y; Tsumoto K; Hayashi K; Hisatome I; Tanida M; Kuda Y; Shibamoto T
    Am J Physiol Heart Circ Physiol; 2017 Jan; 312(1):H106-H127. PubMed ID: 27836893
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nonlinear dynamics of two-dimensional cardiac action potential duration mapping model with memory.
    Kesmia M; Boughaba S; Jacquir S
    J Math Biol; 2019 Apr; 78(5):1529-1552. PubMed ID: 30600334
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Properties and ionic mechanisms of action potential adaptation, restitution, and accommodation in canine epicardium.
    Decker KF; Heijman J; Silva JR; Hund TJ; Rudy Y
    Am J Physiol Heart Circ Physiol; 2009 Apr; 296(4):H1017-26. PubMed ID: 19168720
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simulation and mechanistic investigation of the arrhythmogenic role of the late sodium current in human heart failure.
    Trenor B; Cardona K; Gomez JF; Rajamani S; Ferrero JM; Belardinelli L; Saiz J
    PLoS One; 2012; 7(3):e32659. PubMed ID: 22427860
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ATX-II effects on the apparent location of M cells in a computational model of a human left ventricular wedge.
    Dos Santos RW; Otaviano Campos F; Neumann Ciuffo L; Nygren A; Giles W; Koch H
    J Cardiovasc Electrophysiol; 2006 May; 17 Suppl 1():S86-S95. PubMed ID: 16686688
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Control of voltage-driven instabilities in cardiac myocytes with memory.
    Landaw J; Qu Z
    Chaos; 2018 Nov; 28(11):113122. PubMed ID: 30501225
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Slow [Na]i Changes and Positive Feedback Between Membrane Potential and [Ca]i Underlie Intermittent Early Afterdepolarizations and Arrhythmias.
    Xie Y; Liao Z; Grandi E; Shiferaw Y; Bers DM
    Circ Arrhythm Electrophysiol; 2015 Dec; 8(6):1472-80. PubMed ID: 26407967
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Action potential and contractility changes in [Na(+)](i) overloaded cardiac myocytes: a simulation study.
    Faber GM; Rudy Y
    Biophys J; 2000 May; 78(5):2392-404. PubMed ID: 10777735
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Slow [Na
    Krogh-Madsen T; Christini DJ
    Chaos; 2017 Sep; 27(9):093907. PubMed ID: 28964146
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel computational model of the human ventricular action potential and Ca transient.
    Grandi E; Pasqualini FS; Bers DM
    J Mol Cell Cardiol; 2010 Jan; 48(1):112-21. PubMed ID: 19835882
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic changes of cardiac conduction during rapid pacing.
    Kondratyev AA; Ponard JG; Munteanu A; Rohr S; Kucera JP
    Am J Physiol Heart Circ Physiol; 2007 Apr; 292(4):H1796-811. PubMed ID: 17142344
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synchronization of spatially discordant voltage and calcium alternans in cardiac tissue.
    Huang C; Song Z; Qu Z
    Phys Rev E; 2022 Aug; 106(2-1):024406. PubMed ID: 36109882
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Involvement of veratridine-induced increase of reverse Na(+)/Ca(2+) exchange current in intracellular Ca(2+) overload and extension of action potential duration in rabbit ventricular myocytes].
    Kong LH; Ma JH; Zhang PH; Luo AT; Zhang S; Ren ZQ; Feng J; Chen JL
    Sheng Li Xue Bao; 2012 Aug; 64(4):433-43. PubMed ID: 22907304
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Period doubling cascades of limit cycles in cardiac action potential models as precursors to chaotic early Afterdepolarizations.
    Kügler P; Bulelzai MA; Erhardt AH
    BMC Syst Biol; 2017 Apr; 11(1):42. PubMed ID: 28376924
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simulation of the undiseased human cardiac ventricular action potential: model formulation and experimental validation.
    O'Hara T; Virág L; Varró A; Rudy Y
    PLoS Comput Biol; 2011 May; 7(5):e1002061. PubMed ID: 21637795
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ionic bases for electrical remodeling of the canine cardiac ventricle.
    Jeyaraj D; Wan X; Ficker E; Stelzer JE; Deschenes I; Liu H; Wilson LD; Decker KF; Said TH; Jain MK; Rudy Y; Rosenbaum DS
    Am J Physiol Heart Circ Physiol; 2013 Aug; 305(3):H410-9. PubMed ID: 23709598
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.