These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 38491691)

  • 1. Acoustic monitoring of compaction in cohesive granular materials.
    Canel V; Jia X; Campillo M; Ionescu I
    Phys Rev E; 2024 Feb; 109(2-1):024902. PubMed ID: 38491691
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acoustic probing of elastic behavior and damage in weakly cemented granular media.
    Langlois V; Jia X
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Feb; 89(2):023206. PubMed ID: 25353594
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Compaction of noncohesive and cohesive granular materials under vibrations: Experiments and stochastic model.
    Mathonnet JE; Sornay P; Nicolas M; Dalloz-Dubrujeaud B
    Phys Rev E; 2017 Apr; 95(4-1):042904. PubMed ID: 28505849
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Failure processes of cemented granular materials.
    Yamaguchi Y; Biswas S; Hatano T; Goehring L
    Phys Rev E; 2020 Nov; 102(5-1):052903. PubMed ID: 33327175
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrasonic investigation of granular materials subjected to compression and crushing.
    Gheibi A; Hedayat A
    Ultrasonics; 2018 Jul; 87():112-125. PubMed ID: 29477811
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Grain-Level Numerical Simulations for the Effective Elasticity of Weakly Cemented Sandstones.
    Xu X
    ACS Omega; 2023 Sep; 8(37):33610-33621. PubMed ID: 37744858
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acoustic response of cemented granular sedimentary rocks: molecular dynamics modeling.
    García X; Medina E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jun; 75(6 Pt 1):061308. PubMed ID: 17677256
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Linear and nonlinear Biot waves in a noncohesive granular medium slab: transfer function, self-action, second harmonic generation.
    Legland JB; Tournat V; Dazel O; Novak A; Gusev V
    J Acoust Soc Am; 2012 Jun; 131(6):4292-303. PubMed ID: 22712904
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Permeability of Porous Volcanic Rock Through the Brittle-Ductile Transition.
    Heap MJ; Meyer GG; Noël C; Wadsworth FB; Baud P; Violay MES
    J Geophys Res Solid Earth; 2022 Jun; 127(6):e2022JB024600. PubMed ID: 35864883
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of the fragmentation of brittle particles during compaction process by the acoustic emission technique.
    Favretto-Cristini N; Hégron L; Sornay P
    Ultrasonics; 2016 Apr; 67():178-189. PubMed ID: 26742631
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Numerical study of one-dimensional compression of granular materials. I. Stress-strain behavior, microstructure, and irreversibility.
    Khalili MH; Roux JN; Pereira JM; Brisard S; Bornert M
    Phys Rev E; 2017 Mar; 95(3-1):032907. PubMed ID: 28415255
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Study on mechanical properties and acoustic emission characteristics of deep diorite under uniaxial compression.
    Liu KD; Zhou Y; Zhang XP; Fu SJ; Liu QS; Dong P; Yao KW; Wang DB
    Heliyon; 2024 Jan; 10(2):e24482. PubMed ID: 38293484
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Localization and instability in sheared granular materials: Role of friction and vibration.
    Kothari KR; Elbanna AE
    Phys Rev E; 2017 Feb; 95(2-1):022901. PubMed ID: 28297960
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the Mechanism of Laboratory Earthquake Nucleation Highlighted by Acoustic Emission.
    Ostapchuk AA; Morozova KG
    Sci Rep; 2020 Apr; 10(1):7245. PubMed ID: 32350401
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic compaction of granular materials.
    Favrie N; Gavrilyuk S
    Proc Math Phys Eng Sci; 2013 Dec; 469(2160):20130214. PubMed ID: 24353466
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stick-slip instabilities in sheared granular flow: The role of friction and acoustic vibrations.
    Lieou CK; Elbanna AE; Langer JS; Carlson JM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Aug; 92(2):022209. PubMed ID: 26382396
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Force Transmission Modes of Non-Cohesive and Cohesive Materials at the Critical State.
    Wang JP
    Materials (Basel); 2017 Aug; 10(9):. PubMed ID: 28858238
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Elastic weakening of a dense granular pack by acoustic fluidization: slipping, compaction, and aging.
    Jia X; Brunet T; Laurent J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Aug; 84(2 Pt 1):020301. PubMed ID: 21928938
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recycling of crushed waste rock as backfilling material in coal mine: effects of particle size on compaction behaviours.
    Li M; Zhang J; Song W; Germain DM
    Environ Sci Pollut Res Int; 2019 Mar; 26(9):8789-8797. PubMed ID: 30712211
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microscopic and macroscopic aspects of stick-slip motion in granular shear.
    Cain RG; Page NW; Biggs S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jul; 64(1 Pt 2):016413. PubMed ID: 11461416
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.