These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 38491944)
1. Background-Free SERS Nanosensor for Endogenous Hydrogen Sulfide Detection Based on Prussian Blue-Coated Gold Nanobipyramids. Chen J; Cheng L; Yang Y; Liu Y; Su C; He Y; You M; Lin Z; Hong G ACS Appl Mater Interfaces; 2024 Mar; 16(12):14467-14473. PubMed ID: 38491944 [TBL] [Abstract][Full Text] [Related]
2. Sensing of Hydrogen Sulfide Gas in the Raman-Silent Region Based on Gold Nano-Bipyramids (Au NBPs) Encapsulated by Zeolitic Imidazolate Framework-8. Chen J; Guo L; Chen L; Qiu B; Hong G; Lin Z ACS Sens; 2020 Dec; 5(12):3964-3970. PubMed ID: 33275846 [TBL] [Abstract][Full Text] [Related]
3. High sensitivity and non-background SERS detection of endogenous hydrogen sulfide in living cells using core-shell nanoparticles. Zhang WS; Wang YN; Xu ZR Anal Chim Acta; 2020 Jan; 1094():106-112. PubMed ID: 31761035 [TBL] [Abstract][Full Text] [Related]
4. Block copolymer-templated surface-enhanced Raman scattering-active nanofibers for hydrogen sulfide detection. Zhao X; Wang J; Jia Y Talanta; 2024 Apr; 270():125608. PubMed ID: 38160488 [TBL] [Abstract][Full Text] [Related]
5. Monitoring of Endogenous Hydrogen Sulfide in Living Cells Using Surface-Enhanced Raman Scattering. Li DW; Qu LL; Hu K; Long YT; Tian H Angew Chem Int Ed Engl; 2015 Oct; 54(43):12758-61. PubMed ID: 26314839 [TBL] [Abstract][Full Text] [Related]
6. When Prussian Blue Meets Porous Gold Nanoparticles: A High Signal-to-Background Surface-Enhanced Raman Scattering Probe for Cellular Biomarker Imaging. Li X; Zeng E; Di H; Li Q; Ji J; Yang J; Liu D Adv Biosyst; 2019 Jul; 3(7):e1900046. PubMed ID: 32648671 [TBL] [Abstract][Full Text] [Related]
7. Ratiometric SERS quantitative analysis of tyrosinase activity based on gold-gold hybrid nanoparticles with Prussian blue as an internal standard. Lu D; Zhang Q; Huang Z; Lu Y; Feng S; You R; Li M; Zhang S Colloids Surf B Biointerfaces; 2022 Sep; 217():112645. PubMed ID: 35780613 [TBL] [Abstract][Full Text] [Related]
8. Versatile, reusable and highly sensitive SERS-based point-of-care testing microplatform for reliable ATP detection. Chi J; Xie Q; Huang G; Xie S; Lin X; Huang G Biosens Bioelectron; 2024 Dec; 265():116710. PubMed ID: 39190969 [TBL] [Abstract][Full Text] [Related]
9. Internal Standard Assisted Surface-Enhanced Raman Scattering Nanoprobe with 4-NTP as Recognition Unit for Ratiometric Imaging Hydrogen Sulfide in Living Cells. Chen S; Fan J; Lv M; Hua C; Liang G; Zhang S Anal Chem; 2022 Oct; 94(42):14675-14681. PubMed ID: 36222749 [TBL] [Abstract][Full Text] [Related]
10. A Rational Designed Bioorthogonal Surface-Enhanced Raman Scattering Nanoprobe for Quantitatively Visualizing Endogenous Hydrogen Sulfide in Single Living Cells. Zhong Q; Zhang R; Yang B; Tian T; Zhang K; Liu B ACS Sens; 2022 Mar; 7(3):893-899. PubMed ID: 35213807 [TBL] [Abstract][Full Text] [Related]
11. Python-assisted detection and photothermal inactivation of Salmonella typhimurium and Staphylococcus aureus on a background-free SERS chip. Zheng S; Xiao J; Zhang J; Sun Q; Liu D; Liu Y; Gao X Biosens Bioelectron; 2024 Mar; 247():115913. PubMed ID: 38091898 [TBL] [Abstract][Full Text] [Related]
12. Fine synthesis of Prussian-blue analogue coated gold nanoparticles (Au@PBA NPs) for sorting specific cancer cell subtypes. Shen YM; Gao MY; Chen X; Shen AG; Hu JM Spectrochim Acta A Mol Biomol Spectrosc; 2021 May; 252():119566. PubMed ID: 33607489 [TBL] [Abstract][Full Text] [Related]
13. Dual-Modal Colorimetric and Surface-Enhanced Raman Scattering (SERS)-Based Lateral Flow Immunoassay for Ultrasensitive Detection of SARS-CoV-2 Using a Plasmonic Gold Nanocrown. Atta S; Zhao Y; Li JQ; Vo-Dinh T Anal Chem; 2024 Mar; 96(12):4783-4790. PubMed ID: 38471066 [TBL] [Abstract][Full Text] [Related]
14. A universal strategy for the incorporation of internal standards into SERS substrates to improve the reproducibility of Raman signals. Lin B; Yao Y; Wang Y; Kannan P; Chen L; Guo L Analyst; 2021 Nov; 146(23):7168-7177. PubMed ID: 34700332 [TBL] [Abstract][Full Text] [Related]
15. Rapid synthesis of a highly active and uniform 3-dimensional SERS substrate for on-spot sensing of dopamine. Lin B; Chen J; Kannan P; Zeng Y; Qiu B; Guo L; Lin Z Mikrochim Acta; 2019 Mar; 186(4):260. PubMed ID: 30927088 [TBL] [Abstract][Full Text] [Related]
16. Cell membrane-targeted surface enhanced Raman scattering nanoprobes for the monitoring of hydrogen sulfide secreted from living cells. Chen HY; Zhu SC; Xu HB; Ye MJ; Huang WF; He Y; Qian RC; Li DW Biosens Bioelectron; 2024 Apr; 250():116054. PubMed ID: 38295581 [TBL] [Abstract][Full Text] [Related]
17. Prussian Blue as a Highly Sensitive and Background-Free Resonant Raman Reporter. Yin Y; Li Q; Ma S; Liu H; Dong B; Yang J; Liu D Anal Chem; 2017 Feb; 89(3):1551-1557. PubMed ID: 28208262 [TBL] [Abstract][Full Text] [Related]
18. Recent advances in plasmonic Prussian blue-based SERS nanotags for biological application. Liu YQ; Zhu W; Hu JM; Shen AG Nanoscale Adv; 2021 Nov; 3(23):6568-6579. PubMed ID: 36132655 [TBL] [Abstract][Full Text] [Related]
19. An interference-free SERS-based aptasensor for chlorpyrifos detection. Wang H; Chen Z; Zhu C; Du H; Mao J; Qin H; She Y; Yan M Anal Chim Acta; 2023 Aug; 1268():341398. PubMed ID: 37268344 [TBL] [Abstract][Full Text] [Related]
20. Reliable Quantification of pH Variation in Live Cells Using Prussian Blue-Caged Surface-Enhanced Raman Scattering Probes. Bi Y; Di H; Zeng E; Li Q; Li W; Yang J; Liu D Anal Chem; 2020 Jul; 92(14):9574-9582. PubMed ID: 32600040 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]