BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 38492152)

  • 1. Assessment of historical and projected changes in extreme temperatures of Balochistan, Pakistan using extreme value theory.
    Naeem D; Aziz R; Awais M; Ahmad SR
    Environ Monit Assess; 2024 Mar; 196(4):375. PubMed ID: 38492152
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Future climate projections using the LARS-WG6 downscaling model over Upper Indus Basin, Pakistan.
    Khan SF; Naeem UA
    Environ Monit Assess; 2023 Jun; 195(7):810. PubMed ID: 37284969
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessment of changes in return levels of historical and projected high and low flows of upper Euphrates basin in Turkey using nonstationary models.
    Aziz R; Yucel I
    Environ Monit Assess; 2023 Apr; 195(5):576. PubMed ID: 37060374
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Future precipitation changes over China under 1.5 °C and 2.0 °C global warming targets by using CORDEX regional climate models.
    Li H; Chen H; Wang H; Yu E
    Sci Total Environ; 2018 Nov; 640-641():543-554. PubMed ID: 29864667
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Future ozone-related acute excess mortality under climate and population change scenarios in China: A modeling study.
    Chen K; Fiore AM; Chen R; Jiang L; Jones B; Schneider A; Peters A; Bi J; Kan H; Kinney PL
    PLoS Med; 2018 Jul; 15(7):e1002598. PubMed ID: 29969446
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Future projections of temperature-related indices in Prince Edward Island using ensemble average of three CMIP6 models.
    Maqsood J; Wang X; Farooque AA; Nawaz RA
    Sci Rep; 2024 Jun; 14(1):12661. PubMed ID: 38830965
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Projection of temperature extremes of Egypt using CMIP6 GCMs under multiple shared socioeconomic pathways.
    Hamed MM; Salehie O; Nashwan MS; Shahid S
    Environ Sci Pollut Res Int; 2023 Mar; 30(13):38063-38075. PubMed ID: 36576621
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Observed trends and projections of temperature and precipitation in the Olifants River Catchment in South Africa.
    Adeola AM; Kruger A; Elias Makgoale T; Ondego Botai J
    PLoS One; 2022; 17(8):e0271974. PubMed ID: 35944022
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Asymmetric seasonal daytime and nighttime warming and its effects on vegetation in the Loess Plateau.
    Ma L; Qin F; Wang H; Qin Y; Xia H
    PLoS One; 2019; 14(6):e0218480. PubMed ID: 31233567
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicted changes in future precipitation and air temperature across Bangladesh using CMIP6 GCMs.
    Kamruzzaman M; Wahid S; Shahid S; Alam E; Mainuddin M; Islam HMT; Cho J; Rahman MM; Chandra Biswas J; Thorp KR
    Heliyon; 2023 May; 9(5):e16274. PubMed ID: 37234666
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Future changes in the intensity and frequency of precipitation extremes over China in a warmer world: Insight from a large ensemble.
    Li Y; Bai J; You Z; Hou J; Li W
    PLoS One; 2021; 16(5):e0252133. PubMed ID: 34029349
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Projection of climate change impacts on extreme temperature and precipitation in Central Poland.
    Ghazi B; Przybylak R; Pospieszyńska A
    Sci Rep; 2023 Oct; 13(1):18772. PubMed ID: 37907786
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Machine learning and CORDEX-Africa regional model for assessing the impact of climate change on the Gilgel Gibe Watershed, Ethiopia.
    Bojer AK; Woldetsadik M; Biru BH
    J Environ Manage; 2024 Jul; 363():121394. PubMed ID: 38852417
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Projection of future temperature extremes, related mortality, and adaptation due to climate and population changes in Taiwan.
    Chen CC; Wang YR; Wang YC; Lin SL; Chen CT; Lu MM; Guo YL
    Sci Total Environ; 2021 Mar; 760():143373. PubMed ID: 33172628
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Temperature-related changes in airborne allergenic pollen abundance and seasonality across the northern hemisphere: a retrospective data analysis.
    Ziska LH; Makra L; Harry SK; Bruffaerts N; Hendrickx M; Coates F; Saarto A; Thibaudon M; Oliver G; Damialis A; Charalampopoulos A; Vokou D; Heiđmarsson S; Guđjohnsen E; Bonini M; Oh JW; Sullivan K; Ford L; Brooks GD; Myszkowska D; Severova E; Gehrig R; Ramón GD; Beggs PJ; Knowlton K; Crimmins AR
    Lancet Planet Health; 2019 Mar; 3(3):e124-e131. PubMed ID: 30904111
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Projected climate extremes over agro-climatic zones of Ganga River Basin under 1.5, 2, and 3° global warming levels.
    Singh HV; Joshi N; Suryavanshi S
    Environ Monit Assess; 2023 Aug; 195(9):1062. PubMed ID: 37592096
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Current and Potential Future Seasonal Trends of Indoor Dwelling Temperature and Likely Health Risks in Rural Southern Africa.
    Kapwata T; Gebreslasie MT; Mathee A; Wright CY
    Int J Environ Res Public Health; 2018 May; 15(5):. PubMed ID: 29755105
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Projected monthly temperature changes of the Great Lakes Basin.
    Zhang L; Zhao Y; Hein-Griggs D; Ciborowski JJH
    Environ Res; 2018 Nov; 167():453-467. PubMed ID: 30125764
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Historical and projected response of Southeast Asian lakes surface water temperature to warming climate.
    Virdis SGP; Kongwarakom S; Juneng L; Padedda BM; Shrestha S
    Environ Res; 2024 Apr; 247():118412. PubMed ID: 38316380
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Appraisal of historical trends in maximum and minimum temperature using multiple non-parametric techniques over the agriculture-dominated Narmada Basin, India.
    Swain S; Mishra SK; Pandey A; Dayal D; Srivastava PK
    Environ Monit Assess; 2022 Oct; 194(12):893. PubMed ID: 36242650
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.