BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 38492229)

  • 1. Protocol for generating dormant human brain metastatic breast cancer spheroids in vitro.
    Kondapaneni RV; Gurung SK; Shevde LA; Rao SS
    STAR Protoc; 2024 Jun; 5(2):102962. PubMed ID: 38492229
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An in vitro hyaluronic acid hydrogel based platform to model dormancy in brain metastatic breast cancer cells.
    Narkhede AA; Crenshaw JH; Crossman DK; Shevde LA; Rao SS
    Acta Biomater; 2020 Apr; 107():65-77. PubMed ID: 32119920
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Biomimetic Hyaluronic Acid Hydrogel Models Mass Dormancy in Brain Metastatic Breast Cancer Spheroids.
    Kondapaneni RV; Shevde LA; Rao SS
    Adv Biol (Weinh); 2023 Jan; 7(1):e2200114. PubMed ID: 36354182
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Independently Tuning the Biochemical and Mechanical Properties of 3D Hyaluronan-Based Hydrogels with Oxime and Diels-Alder Chemistry to Culture Breast Cancer Spheroids.
    Baker AEG; Tam RY; Shoichet MS
    Biomacromolecules; 2017 Dec; 18(12):4373-4384. PubMed ID: 29040808
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Benchmarking to the Gold Standard: Hyaluronan-Oxime Hydrogels Recapitulate Xenograft Models with In Vitro Breast Cancer Spheroid Culture.
    Baker AEG; Bahlmann LC; Tam RY; Liu JC; Ganesh AN; Mitrousis N; Marcellus R; Spears M; Bartlett JMS; Cescon DW; Bader GD; Shoichet MS
    Adv Mater; 2019 Sep; 31(36):e1901166. PubMed ID: 31322299
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The influence of matrix stiffness on the behavior of brain metastatic breast cancer cells in a biomimetic hyaluronic acid hydrogel platform.
    Narkhede AA; Crenshaw JH; Manning RM; Rao SS
    J Biomed Mater Res A; 2018 Jul; 106(7):1832-1841. PubMed ID: 29468800
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Matrix stiffness and cluster size collectively regulate dormancy versus proliferation in brain metastatic breast cancer cell clusters.
    Kondapaneni RV; Rao SS
    Biomater Sci; 2020 Dec; 8(23):6637-6646. PubMed ID: 33063814
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Generation of Multicellular Breast Cancer Tumor Spheroids: Comparison of Different Protocols.
    Froehlich K; Haeger JD; Heger J; Pastuschek J; Photini SM; Yan Y; Lupp A; Pfarrer C; Mrowka R; Schleußner E; Markert UR; Schmidt A
    J Mammary Gland Biol Neoplasia; 2016 Dec; 21(3-4):89-98. PubMed ID: 27518775
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Varying the RGD concentration on a hyaluronic acid hydrogel influences dormancy versus proliferation in brain metastatic breast cancer cells.
    Goodarzi K; Lane R; Rao SS
    J Biomed Mater Res A; 2024 May; 112(5):710-720. PubMed ID: 38018303
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation and characterization of size-controlled glioma spheroids using agarose hydrogel microwells.
    Mirab F; Kang YJ; Majd S
    PLoS One; 2019; 14(1):e0211078. PubMed ID: 30677075
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioprinting and Differentiation of Adipose-Derived Stromal Cell Spheroids for a 3D Breast Cancer-Adipose Tissue Model.
    Horder H; Guaza Lasheras M; Grummel N; Nadernezhad A; Herbig J; Ergün S; Teßmar J; Groll J; Fabry B; Bauer-Kreisel P; Blunk T
    Cells; 2021 Apr; 10(4):. PubMed ID: 33916870
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Establishment of
    Ueda H; Mori Y; Yamawaki K; Ishiguro T; Ohata H; Sato A; Sugino K; Yachida N; Yamaguchi M; Suda K; Tamura R; Yoshihara K; Okamoto K; Enomoto T
    STAR Protoc; 2021 Mar; 2(1):100354. PubMed ID: 33665634
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hybrid collagen alginate hydrogel as a platform for 3D tumor spheroid invasion.
    Liu C; Lewin Mejia D; Chiang B; Luker KE; Luker GD
    Acta Biomater; 2018 Jul; 75():213-225. PubMed ID: 29879553
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hyaluronic acid hydrogels with defined crosslink density for the efficient enrichment of breast cancer stem cells.
    Tan S; Yamashita A; Gao SJ; Kurisawa M
    Acta Biomater; 2019 Aug; 94():320-329. PubMed ID: 31125725
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of mechanical properties of gelatin methacryloyl hydrogels on encapsulated stem cell spheroids for 3D tissue engineering.
    Kim EM; Lee GM; Lee S; Kim SJ; Lee D; Yoon DS; Joo J; Kong H; Park HH; Shin H
    Int J Biol Macromol; 2022 Jan; 194():903-913. PubMed ID: 34838857
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glioblastoma spheroid growth and chemotherapeutic responses in single and dual-stiffness hydrogels.
    Bruns J; Egan T; Mercier P; Zustiak SP
    Acta Biomater; 2023 Jun; 163():400-414. PubMed ID: 35659918
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioengineered 3D brain tumor model to elucidate the effects of matrix stiffness on glioblastoma cell behavior using PEG-based hydrogels.
    Wang C; Tong X; Yang F
    Mol Pharm; 2014 Jul; 11(7):2115-25. PubMed ID: 24712441
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protocol for photoactivation of YAP in cancer cell spheroids embedded in collagen gels.
    Illes B; Engelke H
    STAR Protoc; 2021 Sep; 2(3):100657. PubMed ID: 34278337
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Generation of multicellular tumor spheroids of breast cancer cells: how to go three-dimensional.
    Nagelkerke A; Bussink J; Sweep FC; Span PN
    Anal Biochem; 2013 Jun; 437(1):17-9. PubMed ID: 23435308
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Elucidating the mechanobiology of malignant brain tumors using a brain matrix-mimetic hyaluronic acid hydrogel platform.
    Ananthanarayanan B; Kim Y; Kumar S
    Biomaterials; 2011 Nov; 32(31):7913-23. PubMed ID: 21820737
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.