These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 38492303)
41. Signal-enhanced electrochemiluminescence immunosensor based on synergistic catalysis of nicotinamide adenine dinucleotide hydride and silver nanoparticles. Wang G; Jin F; Dai N; Zhong Z; Qing Y; Li M; Yuan R; Wang D Anal Biochem; 2012 Mar; 422(1):7-13. PubMed ID: 22230283 [TBL] [Abstract][Full Text] [Related]
42. Sandwich magnetically imprinted immunosensor for electrochemiluminescence ultrasensing diethylstilbestrol based on enhanced luminescence of Ru@SiO Zhao WR; Xu YH; Kang TF; Zhang X; Liu H; Ming AJ; Cheng SY; Wei F Biosens Bioelectron; 2020 May; 155():112102. PubMed ID: 32090874 [TBL] [Abstract][Full Text] [Related]
43. An antifouling electrochemiluminescence sensor based on mesoporous CuO Tang Y; Hu X; Liu Y; Chen Y; Zhao F; Zeng B Biosens Bioelectron; 2022 Oct; 214():114492. PubMed ID: 35779409 [TBL] [Abstract][Full Text] [Related]
45. Enhanced electrochemiluminescence of RuSi nanoparticles for ultrasensitive detection of ochratoxin A by energy transfer with CdTe quantum dots. Wang Q; Chen M; Zhang H; Wen W; Zhang X; Wang S Biosens Bioelectron; 2016 May; 79():561-7. PubMed ID: 26749097 [TBL] [Abstract][Full Text] [Related]
46. Electrochemiluminescence aptasensing method for ultrasensitive determination of lipopolysaccharide based on CRISPR-Cas12a accessory cleavage activity. Shi J; Li S; Shao R; Jiang Y; Qiao Y; Liu J; Zhou Y; Li Y Talanta; 2024 May; 272():125828. PubMed ID: 38428132 [TBL] [Abstract][Full Text] [Related]
47. "Off-On"switching electrochemiluminescence biosensor for mercury(II) detection based on molecular recognition technology. Cheng L; Wei B; He LL; Mao L; Zhang J; Ceng J; Kong D; Chen C; Cui H; Hong N; Fan H Anal Biochem; 2017 Feb; 518():46-52. PubMed ID: 27769898 [TBL] [Abstract][Full Text] [Related]
48. Electrochemiluminescence based detection of microRNA by applying an amplification strategy and Hg(II)-triggered disassembly of a metal organic frameworks functionalized with ruthenium(II)tris(bipyridine). Jian Y; Wang H; Lan F; Liang L; Ren N; Liu H; Ge S; Yu J Mikrochim Acta; 2018 Jan; 185(2):133. PubMed ID: 29594608 [TBL] [Abstract][Full Text] [Related]
49. Enhanced photoelectric conversion efficiency: A novel h-BN based self-powered photoelectrochemical aptasensor for ultrasensitive detection of diazinon. Tan J; Peng B; Tang L; Feng C; Wang J; Yu J; Ouyang X; Zhu X Biosens Bioelectron; 2019 Oct; 142():111546. PubMed ID: 31387026 [TBL] [Abstract][Full Text] [Related]
50. Nanogold amplified electrochemiluminescence/electrochemistry in bipolar silica nanochannel array for ultrasensitive detection of SARS-CoV-2 pseudoviruses. Zhang T; Gong J; Han Q; Hu W; Yan F; Liu J Talanta; 2024 Sep; 277():126319. PubMed ID: 38805946 [TBL] [Abstract][Full Text] [Related]
51. A smartphone-assisted electrochemiluminescent biosensor for highly sensitive detection of miRNA-21 based on Ru(bpy) Zheng K; Zheng Q; Mu X; Li MJ; Yi C Mikrochim Acta; 2024 Sep; 191(10):596. PubMed ID: 39269609 [TBL] [Abstract][Full Text] [Related]
52. Enhanced electrochemiluminescence of Ru(bpy) Liu Q; Bai W; Guo Z; Zheng X Luminescence; 2021 May; 36(3):642-650. PubMed ID: 33171543 [TBL] [Abstract][Full Text] [Related]
53. Quench-Type Electrochemiluminescence Immunosensor Based on Resonance Energy Transfer from Carbon Nanotubes and Au-Nanoparticles-Enhanced Song C; Li X; Hu L; Shi T; Wu D; Ma H; Zhang Y; Fan D; Wei Q; Ju H ACS Appl Mater Interfaces; 2020 Feb; 12(7):8006-8015. PubMed ID: 31972073 [TBL] [Abstract][Full Text] [Related]
54. Dual-Mode Immunosensor for Electrochemiluminescence Resonance Energy Transfer and Electrochemical Detection of Rabies Virus Glycoprotein Based on Ru(bpy) Li J; Wang C; Wang W; Zhao L; Han H Anal Chem; 2022 May; 94(21):7655-7664. PubMed ID: 35579617 [TBL] [Abstract][Full Text] [Related]
55. Highly sensitive electrochemiluminescence aptasensor based on dual-signal amplification strategy for kanamycin detection. Cheng S; Zhang H; Huang J; Xu R; Sun X; Guo Y Sci Total Environ; 2020 Oct; 737():139785. PubMed ID: 32516665 [TBL] [Abstract][Full Text] [Related]
56. Quenching of the electrochemiluminescence of tris(2,2'-bipyridine)ruthenium(II)/tri-n-propylamine by pristine carbon nanotube and its application to quantitative detection of DNA. Tang X; Zhao D; He J; Li F; Peng J; Zhang M Anal Chem; 2013 Feb; 85(3):1711-8. PubMed ID: 23311854 [TBL] [Abstract][Full Text] [Related]
57. Highly Luminescent and Self-Enhanced Electrochemiluminescence of Tris(bipyridine) Ruthenium(II) Nanohybrid and Its Sensing Application for Label-Free Detection of MicroRNA. Ye J; Liu G; Yan M; Zhu Q; Zhu L; Huang J; Yang X Anal Chem; 2019 Oct; 91(20):13237-13243. PubMed ID: 31525899 [TBL] [Abstract][Full Text] [Related]
58. T4PPVB-COP composite-driven innovative electrochemiluminescence aptasensor for ultra-sensitive detection of chlorpyrifos. Li Y; Hu Q; Zhang J; Zhou H; Wang N; Fang Y; Cui B Food Chem; 2023 Nov; 427():136713. PubMed ID: 37390738 [TBL] [Abstract][Full Text] [Related]
59. Signal-amplified electrochemiluminescence aptasensor for mucin 1 determination using CdS QDs/g-C Hao X; Liu Z; Fan Y; Wang J; Cui C; Hu L Mikrochim Acta; 2023 Jul; 190(8):304. PubMed ID: 37466700 [TBL] [Abstract][Full Text] [Related]
60. A novel solid-state electrochemiluminescence sensor for detection of cytochrome c based on ceria nanoparticles decorated with reduced graphene oxide nanocomposite. Pur MR; Hosseini M; Faridbod F; Dezfuli AS; Ganjali MR Anal Bioanal Chem; 2016 Oct; 408(25):7193-202. PubMed ID: 27558103 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]