These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 38492331)
1. Using the gamma-index analysis for inter-fractional comparison of in-beam PET images for head-and-neck treatment monitoring in proton therapy: A Monte Carlo simulation study. Kraan AC; Moglioni M; Battistoni G; Bersani D; Berti A; Carra P; Cerello P; Ciocca M; Ferrero V; Fiorina E; Mazzoni E; Morrocchi M; Muraro S; Orlandi E; Pennazio F; Retico A; Rosso V; Sportelli G; Vischioni B; Vitolo V; Bisogni MG Phys Med; 2024 Apr; 120():103329. PubMed ID: 38492331 [TBL] [Abstract][Full Text] [Related]
2. Automation and uncertainty analysis of a method for in-vivo range verification in particle therapy. Frey K; Unholtz D; Bauer J; Debus J; Min CH; Bortfeld T; Paganetti H; Parodi K Phys Med Biol; 2014 Oct; 59(19):5903-19. PubMed ID: 25211629 [TBL] [Abstract][Full Text] [Related]
3. Systematic analysis of biological and physical limitations of proton beam range verification with offline PET/CT scans. Knopf A; Parodi K; Bortfeld T; Shih HA; Paganetti H Phys Med Biol; 2009 Jul; 54(14):4477-95. PubMed ID: 19556685 [TBL] [Abstract][Full Text] [Related]
4. Clinical CT-based calculations of dose and positron emitter distributions in proton therapy using the FLUKA Monte Carlo code. Parodi K; Ferrari A; Sommerer F; Paganetti H Phys Med Biol; 2007 Jun; 52(12):3369-87. PubMed ID: 17664549 [TBL] [Abstract][Full Text] [Related]
5. Localization of anatomical changes in patients during proton therapy with in-beam PET monitoring: A voxel-based morphometry approach exploiting Monte Carlo simulations. Kraan AC; Berti A; Retico A; Baroni G; Battistoni G; Belcari N; Cerello P; Ciocca M; De Simoni M; Del Sarto D; Donetti M; Dong Y; Embriaco A; Ferrero V; Fiorina E; Fischetti M; Franciosini G; Giraudo G; Laruina F; Maestri D; Magi M; Magro G; Mancini Terracciano C; Marafini M; Mattei I; Mazzoni E; Mereu P; Mirabelli R; Mirandola A; Morrocchi M; Muraro S; Patera A; Patera V; Pennazio F; Rivetti A; Da Rocha Rolo MD; Rosso V; Sarti A; Schiavi A; Sciubba A; Solfaroli Camillocci E; Sportelli G; Tampellini S; Toppi M; Traini G; Valle SM; Valvo F; Vischioni B; Vitolo V; Wheadon R; Bisogni MG Med Phys; 2022 Jan; 49(1):23-40. PubMed ID: 34813083 [TBL] [Abstract][Full Text] [Related]
6. Independent dose verification system with Monte Carlo simulations using TOPAS for passive scattering proton therapy at the National Cancer Center in Korea. Shin WG; Testa M; Kim HS; Jeong JH; Lee SB; Kim YJ; Min CH Phys Med Biol; 2017 Sep; 62(19):7598-7616. PubMed ID: 28809759 [TBL] [Abstract][Full Text] [Related]
7. Monte Carlo study on the sensitivity of prompt gamma imaging to proton range variations due to interfractional changes in prostate cancer patients. Schmid S; Landry G; Thieke C; Verhaegen F; Ganswindt U; Belka C; Parodi K; Dedes G Phys Med Biol; 2015 Dec; 60(24):9329-47. PubMed ID: 26581022 [TBL] [Abstract][Full Text] [Related]
8. A new treatment planning approach accounting for prompt gamma range verification and interfractional anatomical changes. Tian L; Landry G; Dedes G; Pinto M; Kamp F; Belka C; Parodi K Phys Med Biol; 2020 Apr; 65(9):095005. PubMed ID: 32135530 [TBL] [Abstract][Full Text] [Related]
9. Sensitivity of post treatment positron emission tomography/computed tomography to detect inter-fractional range variations in scanned ion beam therapy. Handrack J; Tessonnier T; Chen W; Liebl J; Debus J; Bauer J; Parodi K Acta Oncol; 2017 Nov; 56(11):1451-1458. PubMed ID: 28918686 [TBL] [Abstract][Full Text] [Related]
10. Monte Carlo patient study on the comparison of prompt gamma and PET imaging for range verification in proton therapy. Moteabbed M; España S; Paganetti H Phys Med Biol; 2011 Feb; 56(4):1063-82. PubMed ID: 21263174 [TBL] [Abstract][Full Text] [Related]
11. The impact of uncertainties in the CT conversion algorithm when predicting proton beam ranges in patients from dose and PET-activity distributions. España S; Paganetti H Phys Med Biol; 2010 Dec; 55(24):7557-71. PubMed ID: 21098912 [TBL] [Abstract][Full Text] [Related]
12. Monte Carlo simulation-based patient-specific QA using machine log files for line-scanning proton radiation therapy. Jeon C; Lee J; Shin J; Cheon W; Ahn S; Jo K; Han Y Med Phys; 2023 Nov; 50(11):7139-7153. PubMed ID: 37756652 [TBL] [Abstract][Full Text] [Related]
13. Monte Carlo proton dose calculations using a radiotherapy specific dual-energy CT scanner for tissue segmentation and range assessment. Almeida IP; Schyns LEJR; Vaniqui A; van der Heyden B; Dedes G; Resch AF; Kamp F; Zindler JD; Parodi K; Landry G; Verhaegen F Phys Med Biol; 2018 May; 63(11):115008. PubMed ID: 29616662 [TBL] [Abstract][Full Text] [Related]
14. Accounting for prompt gamma emission and detection for range verification in proton therapy treatment planning. Tian L; Huang Z; Janssens G; Landry G; Dedes G; Kamp F; Belka C; Pinto M; Parodi K Phys Med Biol; 2021 Feb; 66(5):055005. PubMed ID: 33171445 [TBL] [Abstract][Full Text] [Related]
15. Development and benchmarking of the first fast Monte Carlo engine for helium ion beam dose calculation: MonteRay. Lysakovski P; Besuglow J; Kopp B; Mein S; Tessonnier T; Ferrari A; Haberer T; Debus J; Mairani A Med Phys; 2023 Apr; 50(4):2510-2524. PubMed ID: 36542403 [TBL] [Abstract][Full Text] [Related]
16. PET-based dose delivery verification in proton therapy: a GATE based simulation study of five PET system designs in clinical conditions. Robert C; Fourrier N; Sarrut D; Stute S; Gueth P; Grevillot L; Buvat I Phys Med Biol; 2013 Oct; 58(19):6867-85. PubMed ID: 24025663 [TBL] [Abstract][Full Text] [Related]
17. Clinical application of in-room positron emission tomography for in vivo treatment monitoring in proton radiation therapy. Min CH; Zhu X; Winey BA; Grogg K; Testa M; El Fakhri G; Bortfeld TR; Paganetti H; Shih HA Int J Radiat Oncol Biol Phys; 2013 May; 86(1):183-9. PubMed ID: 23391817 [TBL] [Abstract][Full Text] [Related]
18. Synthetic CT imaging for PET monitoring in proton therapy: a simulation study. Moglioni M; Carra P; Arezzini S; Belcari N; Bersani D; Berti A; Bisogni MG; Calderisi M; Ceppa I; Cerello P; Ciocca M; Ferrero V; Fiorina E; Kraan AC; Mazzoni E; Morrocchi M; Pennazio F; Retico A; Rosso V; Sbolgi F; Vitolo V; Sportelli G Phys Med Biol; 2024 Mar; 69(6):. PubMed ID: 38373343 [No Abstract] [Full Text] [Related]
19. A Monte-Carlo study to assess the effect of 1.5 T magnetic fields on the overall robustness of pencil-beam scanning proton radiotherapy plans for prostate cancer. Kurz C; Landry G; Resch AF; Dedes G; Kamp F; Ganswindt U; Belka C; Raaymakers BW; Parodi K Phys Med Biol; 2017 Oct; 62(21):8470-8482. PubMed ID: 29047455 [TBL] [Abstract][Full Text] [Related]
20. Monte Carlo simulation tool for online treatment monitoring in hadrontherapy with in-beam PET: A patient study. Fiorina E; Ferrero V; Pennazio F; Baroni G; Battistoni G; Belcari N; Cerello P; Camarlinghi N; Ciocca M; Del Guerra A; Donetti M; Ferrari A; Giordanengo S; Giraudo G; Mairani A; Morrocchi M; Peroni C; Rivetti A; Da Rocha Rolo MD; Rossi S; Rosso V; Sala P; Sportelli G; Tampellini S; Valvo F; Wheadon R; Bisogni MG Phys Med; 2018 Jul; 51():71-80. PubMed ID: 29747928 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]