BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 38492405)

  • 1. One-step synthesis of a core-shell structured biochar using algae (Chlorella) powder and ferric sulfate for immobilizing Hg(II).
    Ge Y; Zhu S; Wang K; Liu F; Zhang S; Wang R; Ho SH; Chang JS
    J Hazard Mater; 2024 May; 469():133991. PubMed ID: 38492405
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization and pollutant removal efficiency of biochar derived from baggase, bamboo and tyre.
    Ramola S; Mishra T; Rana G; Srivastava RK
    Environ Monit Assess; 2014 Dec; 186(12):9023-39. PubMed ID: 25287188
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanisms for cadmium adsorption by magnetic biochar composites in an aqueous solution.
    Khan ZH; Gao M; Qiu W; Islam MS; Song Z
    Chemosphere; 2020 May; 246():125701. PubMed ID: 31891847
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation of N-doped porous biochar with high specific surface area and its efficient adsorption for mercury ion from aqueous solution.
    Xie Z; Zhang Y; Zhang Y; Li Z; Sun L; Zhang S; Du C; Zhong C
    Environ Sci Pollut Res Int; 2023 Dec; 30(58):122121-122135. PubMed ID: 37966640
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Study on the Hg
    Jia L; Yu Y; Li ZP; Qin SN; Guo JR; Zhang YQ; Wang JC; Zhang JC; Fan BG; Jin Y
    Bioresour Technol; 2021 Jul; 332():125086. PubMed ID: 33838451
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesizing sulfhydryl-functionalized biochar for effectively removing mercury ions from contaminated water.
    Lu X; Guo J; Chen F; Tian M
    Environ Sci Pollut Res Int; 2023 Jun; 30(29):74127-74140. PubMed ID: 37204567
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thiol-modified biochar synthesized by a facile ball-milling method for enhanced sorption of inorganic Hg
    Lyu H; Xia S; Tang J; Zhang Y; Gao B; Shen B
    J Hazard Mater; 2020 Feb; 384():121357. PubMed ID: 31630859
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanistic insight into the adsorption of mercury (II) on the surface of red mud supported nanoscale zero-valent iron composite.
    Sahu MK; Patel RK; Kurwadkar S
    J Contam Hydrol; 2022 Apr; 246():103959. PubMed ID: 35066263
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel co-polymerization of polypyrrole/polyaniline on ferrate modified biochar composites for the efficient adsorption of hexavalent chromium in water.
    Mao W; Zhang Y; Luo J; Chen L; Guan Y
    Chemosphere; 2022 Sep; 303(Pt 3):135254. PubMed ID: 35690169
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Facile synthesis of core-shell phase-transited lysozyme coated magnetic nanoparticle as a novel adsorbent for Hg(II) removal in aqueous solutions.
    Sun Y; Li X; Zheng W
    J Hazard Mater; 2021 Feb; 403():124012. PubMed ID: 33265041
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Removal of phosphorus using biochar derived from Fenton sludge: Mechanism and performance insights.
    Liu Y; Gao W; Liu R; Zhang W; Niu J; Lou X; Li G; Liu H; Li Z
    Water Environ Res; 2022 Jul; 94(7):e10763. PubMed ID: 35822693
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fe(III) loaded chitosan-biochar composite fibers for the removal of phosphate from water.
    Palansooriya KN; Kim S; Igalavithana AD; Hashimoto Y; Choi YE; Mukhopadhyay R; Sarkar B; Ok YS
    J Hazard Mater; 2021 Aug; 415():125464. PubMed ID: 33730647
    [TBL] [Abstract][Full Text] [Related]  

  • 13.
    ZÁrate A; Florez J; Angulo E; Varela-Prieto L; Infante C; Barrios F; Barraza B; Gallardo DI; Valdés J
    J Microbiol Biotechnol; 2017 Jun; 27(6):1138-1149. PubMed ID: 28301920
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Removing mercury from aqueous solution using sulfurized biochar and associated mechanisms.
    Park JH; Wang JJ; Zhou B; Mikhael JER; DeLaune RD
    Environ Pollut; 2019 Jan; 244():627-635. PubMed ID: 30384068
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Longan shell as novel biomacromolecular sorbent for highly selective removal of lead and mercury ions.
    Huang MR; Li S; Li XG
    J Phys Chem B; 2010 Mar; 114(10):3534-42. PubMed ID: 20175512
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adsorption performance of Ni(II) by KOH-modified biochar derived from different microalgae species.
    Tan L; Nie Y; Chang H; Zhu L; Guo K; Ran X; Zhong N; Zhong D; Xu Y; Ho SH
    Bioresour Technol; 2024 Feb; 394():130287. PubMed ID: 38181998
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The characterization of a novel magnetic biochar derived from sulfate-reducing sludge and its application for aqueous Cr(Ⅵ) removal through synergistic effects of adsorption and chemical reduction.
    Chen Y; Ma R; Pu X; Fu X; Ju X; Arif M; Yan X; Qian J; Liu Y
    Chemosphere; 2022 Dec; 308(Pt 1):136258. PubMed ID: 36057356
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sorption of mercuric ion by synthetic nanocrystalline mackinawite (FeS).
    Jeong HY; Klaue B; Blum JD; Hayes KF
    Environ Sci Technol; 2007 Nov; 41(22):7699-705. PubMed ID: 18075077
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adsorption/reduction of Hg(II) and Pb(II) from aqueous solutions by using bone ash/nZVI composite: effects of aging time, Fe loading quantity and co-existing ions.
    Gil A; Amiri MJ; Abedi-Koupai J; Eslamian S
    Environ Sci Pollut Res Int; 2018 Jan; 25(3):2814-2829. PubMed ID: 29143259
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sustainable removal of Hg(II) by sulfur-modified pine-needle biochar.
    Jeon C; Solis KL; An HR; Hong Y; Igalavithana AD; Ok YS
    J Hazard Mater; 2020 Apr; 388():122048. PubMed ID: 31955026
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.