These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 38492554)

  • 41. Inertial cavitation and associated acoustic emission produced during electrohydraulic shock wave lithotripsy.
    Zhong P; Cioanta I; Cocks FH; Preminger GM
    J Acoust Soc Am; 1997 May; 101(5 Pt 1):2940-50. PubMed ID: 9165740
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Suppressing bubble shielding effect in shock wave lithotripsy by low intensity pulsed ultrasound.
    Wang JC; Zhou Y
    Ultrasonics; 2015 Jan; 55():65-74. PubMed ID: 25173067
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Dynamic features of a laser-induced cavitation bubble near a solid boundary.
    Yang YX; Wang QX; Keat TS
    Ultrason Sonochem; 2013 Jul; 20(4):1098-103. PubMed ID: 23411165
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Study on the bubble transport mechanism in an acoustic standing wave field.
    Xi X; Cegla FB; Lowe M; Thiemann A; Nowak T; Mettin R; Holsteyns F; Lippert A
    Ultrasonics; 2011 Dec; 51(8):1014-25. PubMed ID: 21719064
    [TBL] [Abstract][Full Text] [Related]  

  • 45. An experimentally validated cavitation inception model for spring-driven autoinjectors.
    Kennelly TR; Eshraghi J; Dabiri S; Vlachos PP
    Int J Pharm; 2024 Mar; 652():123753. PubMed ID: 38159583
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Bubble dynamic evolution, material strengthening and chemical effect induced by laser cavitation peening.
    Gu J; Luo C; Lu Z; Ma P; Xu X; Ren X
    Ultrason Sonochem; 2021 Apr; 72():105441. PubMed ID: 33385635
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Bubbles with shock waves and ultrasound: a review.
    Ohl SW; Klaseboer E; Khoo BC
    Interface Focus; 2015 Oct; 5(5):20150019. PubMed ID: 26442143
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Dynamics of cavitation bubbles in viscous liquids in a tube during a transient process.
    Wang Z; Xu P; Ren Z; Yu L; Zuo Z; Liu S
    Ultrason Sonochem; 2024 Mar; 104():106840. PubMed ID: 38457940
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The Chemical History of a Bubble.
    Suslick KS; Eddingsaas NC; Flannigan DJ; Hopkins SD; Xu H
    Acc Chem Res; 2018 Sep; 51(9):2169-2178. PubMed ID: 29771111
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Interaction of lithotripter shockwaves with single inertial cavitation bubbles.
    Klaseboer E; Fong SW; Turangan CK; Khoo BC; Szeri AJ; Calvisi ML; Sankin GN; Zhong P
    J Fluid Mech; 2007; 593():33-56. PubMed ID: 19018296
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Cavitation-induced pressure saturation: a mechanism governing bubble nucleation density in histotripsy.
    Maxwell AD; Vlaisavljevich E
    Phys Med Biol; 2024 Apr; 69(9):. PubMed ID: 38518377
    [No Abstract]   [Full Text] [Related]  

  • 52. Manipulation of bubble collapse patterns near the wall of an adherent gas layer.
    Wei Z; Zhang C; Shen C; Wang L; Xin Z
    Ultrason Sonochem; 2023 Dec; 101():106722. PubMed ID: 38091740
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Cavitation inception pressure and bubble cloud formation due to the backscattering of high-intensity focused ultrasound from a laser-induced bubble.
    Horiba T; Ogasawara T; Takahira H
    J Acoust Soc Am; 2020 Feb; 147(2):1207. PubMed ID: 32113276
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A dual passive cavitation detector for localized detection of lithotripsy-induced cavitation in vitro.
    Cleveland RO; Sapozhnikov OA; Bailey MR; Crum LA
    J Acoust Soc Am; 2000 Mar; 107(3):1745-58. PubMed ID: 10738826
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Bubble proliferation in the cavitation field of a shock wave lithotripter.
    Pishchalnikov YA; Williams JC; McAteer JA
    J Acoust Soc Am; 2011 Aug; 130(2):EL87-93. PubMed ID: 21877776
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Cavitation erosion by shockwave self-focusing of a single bubble.
    Reuter F; Deiter C; Ohl CD
    Ultrason Sonochem; 2022 Nov; 90():106131. PubMed ID: 36274417
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A suppressor to prevent direct wave-induced cavitation in shock wave therapy devices.
    Matula TJ; Hilmo PR; Bailey MR
    J Acoust Soc Am; 2005 Jul; 118(1):178-85. PubMed ID: 16119340
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Effect of macroscopic air bubbles on cell lysis by shock wave lithotripsy in vitro.
    Williams JC; Stonehill MA; Colmenares K; Evan AP; Andreoli SP; Cleveland RO; Bailey MR; Crum LA; McAteer JA
    Ultrasound Med Biol; 1999 Mar; 25(3):473-9. PubMed ID: 10374989
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Wall wettability effect on process of collapse of single cavitation bubbles in near-wall region using pseudo-potential lattice Boltzmann method.
    Yang Q; He X; Peng H; Zhang J
    Heliyon; 2022 Dec; 8(12):e12636. PubMed ID: 36619430
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Controlled, forced collapse of cavitation bubbles for improved stone fragmentation during shock wave lithotripsy.
    Zhong P; Cocks FH; Cioanta I; Preminger GM
    J Urol; 1997 Dec; 158(6):2323-8. PubMed ID: 9366384
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.