These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 38492557)
1. Mammalian maltase-glucoamylase and sucrase-isomaltase inhibitory effects of Artocarpus heterophyllus: An in vitro and in silico approach. Abdulhaniff P; Sakayanathan P; Loganathan C; Iruthayaraj A; Thiyagarajan R; Thayumanavan P Comput Biol Chem; 2024 Jun; 110():108052. PubMed ID: 38492557 [TBL] [Abstract][Full Text] [Related]
2. Dietary phenolic compounds selectively inhibit the individual subunits of maltase-glucoamylase and sucrase-isomaltase with the potential of modulating glucose release. Simsek M; Quezada-Calvillo R; Ferruzzi MG; Nichols BL; Hamaker BR J Agric Food Chem; 2015 Apr; 63(15):3873-9. PubMed ID: 25816913 [TBL] [Abstract][Full Text] [Related]
3. Luminal starch substrate "brake" on maltase-glucoamylase activity is located within the glucoamylase subunit. Quezada-Calvillo R; Sim L; Ao Z; Hamaker BR; Quaroni A; Brayer GD; Sterchi EE; Robayo-Torres CC; Rose DR; Nichols BL J Nutr; 2008 Apr; 138(4):685-92. PubMed ID: 18356321 [TBL] [Abstract][Full Text] [Related]
4. Naturally occurring sulfonium-ion glucosidase inhibitors and their derivatives: a promising class of potential antidiabetic agents. Mohan S; Eskandari R; Pinto BM Acc Chem Res; 2014 Jan; 47(1):211-25. PubMed ID: 23964564 [TBL] [Abstract][Full Text] [Related]
5. Exploring the interaction of phytochemicals from Hibiscus rosa-sinensis flowers with glucosidase and acetylcholinesterase: An integrated in vitro and in silico approach. Loganathan C; Ameen F; Sakayanathan P; Amirul Islam M; Thayumanavan P Comput Biol Chem; 2024 Feb; 108():107996. PubMed ID: 38061170 [TBL] [Abstract][Full Text] [Related]
6. Phenolic compounds increase the transcription of mouse intestinal maltase-glucoamylase and sucrase-isomaltase. Simsek M; Quezada-Calvillo R; Nichols BL; Hamaker BR Food Funct; 2017 May; 8(5):1915-1924. PubMed ID: 28443839 [TBL] [Abstract][Full Text] [Related]
7. Maltase-glucoamylase inhibition potency and cytotoxicity of pyrimidine-fused compounds: An in silico and in vitro approach. Mehraban MH; Mansourian M; Ahrari S; HajiEbrahimi A; Odooli S; Motovali-Bashi M; Yousefi R; Ghasemi Y Comput Biol Chem; 2019 Oct; 82():25-36. PubMed ID: 31255972 [TBL] [Abstract][Full Text] [Related]
8. Dietary 5,6,7-Trihydroxy-flavonoid Aglycones and 1-Deoxynojirimycin Synergistically Inhibit the Recombinant Maltase-Glucoamylase Subunit of α-Glucosidase and Lower Postprandial Blood Glucose. Dong YS; Yu N; Li X; Zhang B; Xing Y; Zhuang C; Xiu ZL J Agric Food Chem; 2020 Aug; 68(33):8774-8787. PubMed ID: 32806121 [TBL] [Abstract][Full Text] [Related]
9. Structural basis for substrate selectivity in human maltase-glucoamylase and sucrase-isomaltase N-terminal domains. Sim L; Willemsma C; Mohan S; Naim HY; Pinto BM; Rose DR J Biol Chem; 2010 Jun; 285(23):17763-70. PubMed ID: 20356844 [TBL] [Abstract][Full Text] [Related]
10. Biological interaction of newly synthesized astaxanthin-s-allyl cysteine biconjugate with Saccharomyces cerevisiae and mammalian α-glucosidase: In vitro kinetics and in silico docking analysis. Sakayanathan P; Loganathan C; Iruthayaraj A; Periyasamy P; Poomani K; Periasamy V; Thayumanavan P Int J Biol Macromol; 2018 Oct; 118(Pt A):252-262. PubMed ID: 29885400 [TBL] [Abstract][Full Text] [Related]
11. Selectivity of 3'-O-methylponkoranol for inhibition of N- and C-terminal maltase glucoamylase and sucrase isomaltase, potential therapeutics for digestive disorders or their sequelae. Eskandari R; Jones K; Rose DR; Pinto BM Bioorg Med Chem Lett; 2011 Nov; 21(21):6491-4. PubMed ID: 21924903 [TBL] [Abstract][Full Text] [Related]
12. Brush border membrane sucrase-isomaltase, maltase-glucoamylase and trehalase in mammals. Comparative development, effects of glucocorticoids, molecular mechanisms, and phylogenetic implications. Galand G Comp Biochem Physiol B; 1989; 94(1):1-11. PubMed ID: 2513162 [TBL] [Abstract][Full Text] [Related]
17. Modeling of cooked starch digestion process using recombinant human pancreatic α-amylase and maltase-glucoamylase for in vitro evaluation of α-glucosidase inhibitors. Cao X; Zhang C; Dong Y; Geng P; Bai F; Bai G Carbohydr Res; 2015 Sep; 414():15-21. PubMed ID: 26162745 [TBL] [Abstract][Full Text] [Related]
18. Purification and characterization of alpha-glucosidase complex from the intestine of the frog, Rana japonica. Takesue Y; Takesue S Biochim Biophys Acta; 1996 Sep; 1296(2):152-8. PubMed ID: 8814221 [TBL] [Abstract][Full Text] [Related]
19. Studies on the intestinal disaccharidases of the pigeon. III. Separation, purification and properties of sucrase-isomaltase and maltase-glucoamylase. Prakash K; Patil SD; Hegde SN Arch Int Physiol Biochim; 1983 Dec; 91(5):379-90. PubMed ID: 6204606 [TBL] [Abstract][Full Text] [Related]
20. Characterization of nimbidiol as a potent intestinal disaccharidase and glucoamylase inhibitor present in Azadirachta indica (neem) useful for the treatment of diabetes. Mukherjee A; Sengupta S J Enzyme Inhib Med Chem; 2013 Oct; 28(5):900-10. PubMed ID: 22803678 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]