BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

62 related articles for article (PubMed ID: 38492861)

  • 21. Epidemiology of acute myeloid leukemia: Recent progress and enduring challenges.
    Shallis RM; Wang R; Davidoff A; Ma X; Zeidan AM
    Blood Rev; 2019 Jul; 36():70-87. PubMed ID: 31101526
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Acute Myeloid Leukemia and the Bone Marrow Niche-Take a Closer Look.
    Behrmann L; Wellbrock J; Fiedler W
    Front Oncol; 2018; 8():444. PubMed ID: 30370251
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Immunological memory cells.
    Ratajczak W; Niedźwiedzka-Rystwej P; Tokarz-Deptuła B; Deptuła W
    Cent Eur J Immunol; 2018; 43(2):194-203. PubMed ID: 30135633
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Targeting the Immune Microenvironment in Acute Myeloid Leukemia: A Focus on T Cell Immunity.
    Lamble AJ; Lind EF
    Front Oncol; 2018; 8():213. PubMed ID: 29951373
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A Detailed Protocol for Characterizing the Murine C1498 Cell Line and its Associated Leukemia Mouse Model.
    Mopin A; Driss V; Brinster C
    J Vis Exp; 2016 Oct; (116):. PubMed ID: 27768040
    [TBL] [Abstract][Full Text] [Related]  

  • 26. STING Pathway Activation Stimulates Potent Immunity against Acute Myeloid Leukemia.
    Curran E; Chen X; Corrales L; Kline DE; Dubensky TW; Duttagupta P; Kortylewski M; Kline J
    Cell Rep; 2016 Jun; 15(11):2357-66. PubMed ID: 27264175
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Acute Myeloid Leukemia.
    Döhner H; Weisdorf DJ; Bloomfield CD
    N Engl J Med; 2015 Sep; 373(12):1136-52. PubMed ID: 26376137
    [No Abstract]   [Full Text] [Related]  

  • 28. Survival of patients with acute myeloid leukemia relapsing after allogeneic hematopoietic cell transplantation: a center for international blood and marrow transplant research study.
    Bejanyan N; Weisdorf DJ; Logan BR; Wang HL; Devine SM; de Lima M; Bunjes DW; Zhang MJ
    Biol Blood Marrow Transplant; 2015 Mar; 21(3):454-9. PubMed ID: 25460355
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Granzyme B secretion by human memory CD4 T cells is less strictly regulated compared to memory CD8 T cells.
    Lin L; Couturier J; Yu X; Medina MA; Kozinetz CA; Lewis DE
    BMC Immunol; 2014 Sep; 15():36. PubMed ID: 25245659
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Peripheral T-cell tolerance in hosts with acute myeloid leukemia.
    Chen X; Kline DE; Kline J
    Oncoimmunology; 2013 Aug; 2(8):e25445. PubMed ID: 24179704
    [TBL] [Abstract][Full Text] [Related]  

  • 31. CD40 ligation reverses T cell tolerance in acute myeloid leukemia.
    Zhang L; Chen X; Liu X; Kline DE; Teague RM; Gajewski TF; Kline J
    J Clin Invest; 2013 May; 123(5):1999-2010. PubMed ID: 23619361
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Development of monocytes, macrophages, and dendritic cells.
    Geissmann F; Manz MG; Jung S; Sieweke MH; Merad M; Ley K
    Science; 2010 Feb; 327(5966):656-61. PubMed ID: 20133564
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Central memory and effector memory T cell subsets: function, generation, and maintenance.
    Sallusto F; Geginat J; Lanzavecchia A
    Annu Rev Immunol; 2004; 22():745-63. PubMed ID: 15032595
    [TBL] [Abstract][Full Text] [Related]  

  • 34. STING-activating cyclic dinucleotide-manganese nanoparticles evoke robust immunity against acute myeloid leukemia.
    Aikins ME; Sun X; Dobson H; Zhou X; Xu Y; Lei YL; Moon JJ
    J Control Release; 2024 Apr; 368():768-779. PubMed ID: 38492861
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The stimulator of interferon genes (STING) agonists for treating acute myeloid leukemia (AML): current knowledge and future outlook.
    Song X; Peng Y; Wang X; Chen Q; Lan X; Shi F
    Clin Transl Oncol; 2023 Jun; 25(6):1545-1553. PubMed ID: 36587109
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Harnessing the Immune System Against Leukemia: Monoclonal Antibodies and Checkpoint Strategies for AML.
    Masarova L; Kantarjian H; Garcia-Mannero G; Ravandi F; Sharma P; Daver N
    Adv Exp Med Biol; 2017; 995():73-95. PubMed ID: 28321813
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Insight into the dichotomous regulation of STING activation in immunotherapy.
    Hu Z; Yang Y; Fang L; Zhou J; Zhang H
    Immunopharmacol Immunotoxicol; 2021 Apr; 43(2):126-137. PubMed ID: 33618600
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Emerging mechanisms and implications of cGAS-STING signaling in cancer immunotherapy strategies.
    Zhang J; Yu S; Peng Q; Wang P; Fang L
    Cancer Biol Med; 2024 Jan; 21(1):45-64. PubMed ID: 38172538
    [TBL] [Abstract][Full Text] [Related]  

  • 39. STING pathway as a cancer immunotherapy: Progress and challenges in activating anti-tumor immunity.
    Tabar MMM; Fathi M; Kazemi F; Bazregari G; Ghasemian A
    Mol Biol Rep; 2024 Apr; 51(1):487. PubMed ID: 38578532
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Targeting STING for cancer immunotherapy: From mechanisms to translation.
    Huang R; Ning Q; Zhao J; Zhao X; Zeng L; Yi Y; Tang S
    Int Immunopharmacol; 2022 Dec; 113(Pt A):109304. PubMed ID: 36252492
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.