These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 38493025)

  • 1. Effect of a metal artifact reduction algorithm on dehiscence and fenestration detection around zirconia implants with cone beam computed tomography.
    Freire BB; Wanderley VA; Câmara JVF; Santos LA; Ferrari CR; Araujo TT; Chilvarquer I
    Oral Surg Oral Med Oral Pathol Oral Radiol; 2024 Aug; 138(2):316-323. PubMed ID: 38493025
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficacy of Metal Artifact Reduction Algorithm of Cone-Beam Computed Tomography for Detection of Fenestration and Dehiscence around Dental Implants.
    Salemi F; Jamalpour MR; Eskandarloo A; Tapak L; Rahimi N
    J Biomed Phys Eng; 2021 Jun; 11(3):305-314. PubMed ID: 34189119
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficacy of low-dose cone beam computed tomography and metal artifact reduction tool for assessment of peri-implant bone defects: an in vitro study.
    Nomier AS; Gaweesh YSE; Taalab MR; El Sadat SA
    BMC Oral Health; 2022 Dec; 22(1):615. PubMed ID: 36528573
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The efficacy of metal artifact reduction (MAR) algorithm in cone-beam computed tomography on the diagnostic accuracy of fenestration and dehiscence around dental implants.
    Sheikhi M; Behfarnia P; Mostajabi M; Nasri N
    J Periodontol; 2020 Feb; 91(2):209-214. PubMed ID: 31364765
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detection of periimplant fenestration and dehiscence with the use of two scan modes and the smallest voxel sizes of a cone-beam computed tomography device.
    de-Azevedo-Vaz SL; Vasconcelos Kde F; Neves FS; Melo SL; Campos PS; Haiter-Neto F
    Oral Surg Oral Med Oral Pathol Oral Radiol; 2013 Jan; 115(1):121-7. PubMed ID: 23217543
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficacy of a cone beam computed tomography metal artifact reduction algorithm for the detection of peri-implant fenestrations and dehiscences.
    de-Azevedo-Vaz SL; Peyneau PD; Ramirez-Sotelo LR; Vasconcelos Kde F; Campos PS; Haiter-Neto F
    Oral Surg Oral Med Oral Pathol Oral Radiol; 2016 May; 121(5):550-6. PubMed ID: 27068312
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of kilovoltage-peak and the metal artifact reduction tool in cone-beam computed tomography on the detection of bone defects around titanium-zirconia and zirconia implants.
    Fontenele RC; Nascimento EHL; Imbelloni-Vasconcelos AC; Martins LAC; Pontual ADA; Ramos-Perez FMM; Freitas DQ
    Imaging Sci Dent; 2022 Sep; 52(3):267-273. PubMed ID: 36238703
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of a metal artifact reduction algorithm and an adaptive image noise optimization filter in the estimation of peri-implant fenestration defects using cone beam computed tomography: an in-vitro study.
    Bagis N; Kurt MH; Evli C; Camgoz M; Atakan C; Peker Ozturk H; Orhan K
    Oral Radiol; 2022 Jul; 38(3):325-335. PubMed ID: 34387842
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of an adjacent zirconium implant, tube current, and metal artifact reduction algorithm on horizontal root fracture diagnosis in cone beam computed tomography.
    Ruiz DC; Reis LO; Fontenele RC; Miranda-Viana M; Farias-Gomes A; Freitas DQ
    Oral Surg Oral Med Oral Pathol Oral Radiol; 2024 Feb; 137(2):190-198. PubMed ID: 37940483
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Zirconia implants interfere with the evaluation of peri-implant bone defects in cone beam computed tomography (CBCT) images even with artifact reduction, a pilot study.
    Kuusisto N; Abushahba F; Syrjänen S; Huumonen S; Vallittu P; Närhi T
    Dentomaxillofac Radiol; 2023 Nov; 52(8):20230252. PubMed ID: 37641961
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of a metal artifact reduction algorithm and an optimization filter in the estimation of peri-implant dehiscence defects by using cone beam computed tomography: an in-vitro study.
    Bayrak S; Orhan K; Kursun Çakmak ES; Görürgöz C; Odabaşı O; Yilmaz D; Atakan C
    Oral Surg Oral Med Oral Pathol Oral Radiol; 2020 Aug; 130(2):209-216. PubMed ID: 32197878
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accuracy of cone-beam computed tomography, dental magnetic resonance imaging, and intraoral radiography for detecting peri-implant bone defects at single zirconia implants-An in vitro study.
    Hilgenfeld T; Juerchott A; Deisenhofer UK; Krisam J; Rammelsberg P; Heiland S; Bendszus M; Schwindling FS
    Clin Oral Implants Res; 2018 Sep; 29(9):922-930. PubMed ID: 30112833
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diagnostic Accuracy of Three Cone Beam Computed Tomography Systems and Periapical Radiography for Detection of Fenestration Around Dental Implants.
    Eskandarloo A; Saati S; Ardakani MP; Jamalpour M; Gholi Mezerji NM; Akheshteh V
    Contemp Clin Dent; 2018; 9(3):376-381. PubMed ID: 30166830
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of field of view in the detection of chemically created peri-implant bone defects in bovine ribs using cone beam computed tomography: an in vitro study.
    Pinheiro LR; Gaia BF; Oliveira de Sales MA; Umetsubo OS; Santos Junior O; Cavalcanti MG
    Oral Surg Oral Med Oral Pathol Oral Radiol; 2015 Jul; 120(1):69-77. PubMed ID: 26093682
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancement cone beam computed tomography filters improve in vitro periimplant dehiscence detection.
    de-Azevedo-Vaz SL; Alencar PN; Rovaris K; Campos PS; Haiter-Neto F
    Oral Surg Oral Med Oral Pathol Oral Radiol; 2013 Nov; 116(5):633-9. PubMed ID: 24018127
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An In Vivo and Cone Beam Computed Tomography Investigation of the Accuracy in Measuring Alveolar Bone Height and Detecting Dehiscence and Fenestration Defects.
    Peterson AG; Wang M; Gonzalez S; Covell DA; Katancik J; Sehgal HS
    Int J Oral Maxillofac Implants; 2018; 33(6):1296-1304. PubMed ID: 30427960
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detection of peri-implant bone defects using cone-beam computed tomography and digital periapical radiography with parallel and oblique projection.
    Vadiati Saberi B; Khosravifard N; Ghandari F; Hadinezhad A
    Imaging Sci Dent; 2019 Dec; 49(4):265-272. PubMed ID: 31915611
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Do metal artifact reduction algorithms influence the detection of implant-related injuries to the inferior alveolar canal in CBCT images?
    Soltani P; Devlin H; Etemadi Sh M; Rengo C; Spagnuolo G; Baghaei K
    BMC Oral Health; 2024 Feb; 24(1):268. PubMed ID: 38395919
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of Cone Beam Computed Tomography Settings on Implant Artifact Production: Zirconia and Titanium.
    Vasconcelos TV; Leandro Nascimento EH; Bechara BB; Freitas DQ; Noujeim M
    Int J Oral Maxillofac Implants; 2019; 34(5):1114-1120. PubMed ID: 31528863
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Higher Resolution in Cone Beam Computed Tomography Is Accompanied by Improved Bone Detection in Peri-implant Bone Despite Metal Artifact Presence.
    Kerkfeld V; Meyer U
    Int J Oral Maxillofac Implants; 2018; 33(6):1331-1338. PubMed ID: 30427964
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.