BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 38493095)

  • 1. Integration of scRNA-seq data by disentangled representation learning with condition domain adaptation.
    Liu R; Qian K; He X; Li H
    BMC Bioinformatics; 2024 Mar; 25(1):116. PubMed ID: 38493095
    [TBL] [Abstract][Full Text] [Related]  

  • 2. scGCC: Graph Contrastive Clustering With Neighborhood Augmentations for scRNA-Seq Data Analysis.
    Tian SW; Ni JC; Wang YT; Zheng CH; Ji CM
    IEEE J Biomed Health Inform; 2023 Dec; 27(12):6133-6143. PubMed ID: 37751336
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Attention-based deep clustering method for scRNA-seq cell type identification.
    Li S; Guo H; Zhang S; Li Y; Li M
    PLoS Comput Biol; 2023 Nov; 19(11):e1011641. PubMed ID: 37948464
    [TBL] [Abstract][Full Text] [Related]  

  • 4. BERMAD: batch effect removal for single-cell RNA-seq data using a multi-layer adaptation autoencoder with dual-channel framework.
    Zhan X; Yin Y; Zhang H
    Bioinformatics; 2024 Mar; 40(3):. PubMed ID: 38439545
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transfer learning for clustering single-cell RNA-seq data crossing-species and batch, case on uterine fibroids.
    Wang YM; Sun Y; Wang B; Wu Z; He XY; Zhao Y
    Brief Bioinform; 2023 Nov; 25(1):. PubMed ID: 37991248
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deep enhanced constraint clustering based on contrastive learning for scRNA-seq data.
    Gan Y; Chen Y; Xu G; Guo W; Zou G
    Brief Bioinform; 2023 Jul; 24(4):. PubMed ID: 37313714
    [TBL] [Abstract][Full Text] [Related]  

  • 7. BERMUDA: a novel deep transfer learning method for single-cell RNA sequencing batch correction reveals hidden high-resolution cellular subtypes.
    Wang T; Johnson TS; Shao W; Lu Z; Helm BR; Zhang J; Huang K
    Genome Biol; 2019 Aug; 20(1):165. PubMed ID: 31405383
    [TBL] [Abstract][Full Text] [Related]  

  • 8. scBGEDA: deep single-cell clustering analysis via a dual denoising autoencoder with bipartite graph ensemble clustering.
    Wang Y; Yu Z; Li S; Bian C; Liang Y; Wong KC; Li X
    Bioinformatics; 2023 Feb; 39(2):. PubMed ID: 36734596
    [TBL] [Abstract][Full Text] [Related]  

  • 9. scNAME: neighborhood contrastive clustering with ancillary mask estimation for scRNA-seq data.
    Wan H; Chen L; Deng M
    Bioinformatics; 2022 Mar; 38(6):1575-1583. PubMed ID: 34999761
    [TBL] [Abstract][Full Text] [Related]  

  • 10. scDisInFact: disentangled learning for integration and prediction of multi-batch multi-condition single-cell RNA-sequencing data.
    Zhang Z; Zhao X; Bindra M; Qiu P; Zhang X
    Nat Commun; 2024 Jan; 15(1):912. PubMed ID: 38291052
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Domain adaptation for supervised integration of scRNA-seq data.
    Sun Y; Qiu P
    Commun Biol; 2023 Mar; 6(1):274. PubMed ID: 36928806
    [TBL] [Abstract][Full Text] [Related]  

  • 12. scDCCA: deep contrastive clustering for single-cell RNA-seq data based on auto-encoder network.
    Wang J; Xia J; Wang H; Su Y; Zheng CH
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36631401
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multi-View Clustering With Graph Learning for scRNA-Seq Data.
    Wu W; Zhang W; Hou W; Ma X
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(6):3535-3546. PubMed ID: 37486829
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contrastive self-supervised clustering of scRNA-seq data.
    Ciortan M; Defrance M
    BMC Bioinformatics; 2021 May; 22(1):280. PubMed ID: 34044773
    [TBL] [Abstract][Full Text] [Related]  

  • 15. JLONMFSC: Clustering scRNA-seq data based on joint learning of non-negative matrix factorization and subspace clustering.
    Lan W; Liu M; Chen J; Ye J; Zheng R; Zhu X; Peng W
    Methods; 2024 Feb; 222():1-9. PubMed ID: 38128706
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep structural clustering for single-cell RNA-seq data jointly through autoencoder and graph neural network.
    Gan Y; Huang X; Zou G; Zhou S; Guan J
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35172334
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integration of single cell data by disentangled representation learning.
    Guo T; Chen Y; Shi M; Li X; Zhang MQ
    Nucleic Acids Res; 2022 Jan; 50(2):e8. PubMed ID: 34850092
    [TBL] [Abstract][Full Text] [Related]  

  • 18. scGMAAE: Gaussian mixture adversarial autoencoders for diversification analysis of scRNA-seq data.
    Wang HY; Zhao JP; Zheng CH; Su YS
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36592058
    [TBL] [Abstract][Full Text] [Related]  

  • 19. scMAE: a masked autoencoder for single-cell RNA-seq clustering.
    Fang Z; Zheng R; Li M
    Bioinformatics; 2024 Jan; 40(1):. PubMed ID: 38230824
    [TBL] [Abstract][Full Text] [Related]  

  • 20. scAMAC: self-supervised clustering of scRNA-seq data based on adaptive multi-scale autoencoder.
    Tan D; Yang C; Wang J; Su Y; Zheng C
    Brief Bioinform; 2024 Jan; 25(2):. PubMed ID: 38426327
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.