These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. High Levels of Intrinsic Tetracycline Resistance in Mycobacterium abscessus Are Conferred by a Tetracycline-Modifying Monooxygenase. Rudra P; Hurst-Hess K; Lappierre P; Ghosh P Antimicrob Agents Chemother; 2018 Jun; 62(6):. PubMed ID: 29632012 [TBL] [Abstract][Full Text] [Related]
7. Tetracycline-modifying enzyme SmTetX from Stenotrophomonas maltophilia. Malý M; Kolenko P; Stránský J; Švecová L; Dušková J; Koval' T; Skálová T; Trundová M; Adámková K; Černý J; Božíková P; Dohnálek J Acta Crystallogr F Struct Biol Commun; 2023 Jul; 79(Pt 7):180-192. PubMed ID: 37405486 [TBL] [Abstract][Full Text] [Related]
8. The Tetracycline Destructases: A Novel Family of Tetracycline-Inactivating Enzymes. Forsberg KJ; Patel S; Wencewicz TA; Dantas G Chem Biol; 2015 Jul; 22(7):888-97. PubMed ID: 26097034 [TBL] [Abstract][Full Text] [Related]
9. An Artificial Yeast Genetic Circuit Enables Deep Mutational Scanning of an Antimicrobial Resistance Protein. Scott LH; Mathews JC; Flematti GR; Filipovska A; Rackham O ACS Synth Biol; 2018 Aug; 7(8):1907-1917. PubMed ID: 29979580 [TBL] [Abstract][Full Text] [Related]
10. Emerging High-Level Tigecycline Resistance: Novel Tetracycline Destructases Spread via the Mobile Tet(X). Fang LX; Chen C; Cui CY; Li XP; Zhang Y; Liao XP; Sun J; Liu YH Bioessays; 2020 Aug; 42(8):e2000014. PubMed ID: 32567703 [TBL] [Abstract][Full Text] [Related]
11. Role of tetracycline speciation in the bioavailability to Escherichia coli for uptake and expression of antibiotic resistance. Zhang Y; Boyd SA; Teppen BJ; Tiedje JM; Li H Environ Sci Technol; 2014 May; 48(9):4893-900. PubMed ID: 24717018 [TBL] [Abstract][Full Text] [Related]
12. Evidence for more than one mechanism of plasmid-determined tetracycline resistance in Escherichia coli. Shales SW; Chopra I; Ball PR J Gen Microbiol; 1980 Nov; 121(1):221-9. PubMed ID: 7019387 [TBL] [Abstract][Full Text] [Related]
13. Structural basis for a new tetracycline resistance mechanism relying on the TetX monooxygenase. Volkers G; Palm GJ; Weiss MS; Wright GD; Hinrichs W FEBS Lett; 2011 Apr; 585(7):1061-6. PubMed ID: 21402075 [TBL] [Abstract][Full Text] [Related]
14. Organic acids enhance bioavailability of tetracycline in water to Escherichia coli for uptake and expression of antibiotic resistance. Zhang Y; Boyd SA; Teppen BJ; Tiedje JM; Li H Water Res; 2014 Nov; 65():98-106. PubMed ID: 25100186 [TBL] [Abstract][Full Text] [Related]
16. Deep Mutational Scanning Reveals the Active-Site Sequence Requirements for the Colistin Antibiotic Resistance Enzyme MCR-1. Sun Z; Palzkill T mBio; 2021 Dec; 12(6):e0277621. PubMed ID: 34781730 [TBL] [Abstract][Full Text] [Related]
17. Target- and resistance-based mechanistic studies with TP-434, a novel fluorocycline antibiotic. Grossman TH; Starosta AL; Fyfe C; O'Brien W; Rothstein DM; Mikolajka A; Wilson DN; Sutcliffe JA Antimicrob Agents Chemother; 2012 May; 56(5):2559-64. PubMed ID: 22354310 [TBL] [Abstract][Full Text] [Related]
18. Tetracycline-Inactivating Enzymes. Markley JL; Wencewicz TA Front Microbiol; 2018; 9():1058. PubMed ID: 29899733 [TBL] [Abstract][Full Text] [Related]
19. Distribution and transferability of tetracycline resistance determinants in Escherichia coli isolated from meat and meat products. Koo HJ; Woo GJ Int J Food Microbiol; 2011 Feb; 145(2-3):407-13. PubMed ID: 21324543 [TBL] [Abstract][Full Text] [Related]
20. Transformation of tetracycline by TetX and its subsequent degradation in a heterologous host. Ghosh S; LaPara TM; Sadowsky MJ FEMS Microbiol Ecol; 2015 Jun; 91(6):. PubMed ID: 26038239 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]