BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 38493320)

  • 21. Convergent but temporally separated inputs to lateral amygdala neurons from the auditory thalamus and auditory cortex use different postsynaptic receptors: in vivo intracellular and extracellular recordings in fear conditioning pathways.
    Li XF; Stutzmann GE; LeDoux JE
    Learn Mem; 1996; 3(2-3):229-42. PubMed ID: 10456093
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Inhibitory circuits in fear memory and fear-related disorders.
    Singh S; Topolnik L
    Front Neural Circuits; 2023; 17():1122314. PubMed ID: 37035504
    [TBL] [Abstract][Full Text] [Related]  

  • 23. GABAergic interneurons: The orchestra or the conductor in fear learning and memory?
    Lucas EK; Clem RL
    Brain Res Bull; 2018 Jul; 141():13-19. PubMed ID: 29197563
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Layer 5 Callosal Parvalbumin-Expressing Neurons: A Distinct Functional Group of GABAergic Neurons.
    Zurita H; Feyen PLC; Apicella AJ
    Front Cell Neurosci; 2018; 12():53. PubMed ID: 29559891
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fear conditioning enhances different temporal components of tone-evoked spike trains in auditory cortex and lateral amygdala.
    Quirk GJ; Armony JL; LeDoux JE
    Neuron; 1997 Sep; 19(3):613-24. PubMed ID: 9331352
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Inhibitory projections connecting the dentate gyri in the two hemispheres support spatial and contextual memory.
    Yen TY; Huang X; MacLaren DAA; Schlesiger MI; Monyer H; Lien CC
    Cell Rep; 2022 May; 39(7):110831. PubMed ID: 35584671
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fear Learning Regulates Cortical Sensory Representations by Suppressing Habituation.
    Gillet SN; Kato HK; Justen MA; Lai M; Isaacson JS
    Front Neural Circuits; 2017; 11():112. PubMed ID: 29375323
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Auditory cortex shapes sound responses in the inferior colliculus.
    Blackwell JM; Lesicko AM; Rao W; De Biasi M; Geffen MN
    Elife; 2020 Jan; 9():. PubMed ID: 32003747
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Total Number and Ratio of GABAergic Neuron Types in the Mouse Lateral and Basal Amygdala.
    Vereczki VK; Müller K; Krizsán É; Máté Z; Fekete Z; Rovira-Esteban L; Veres JM; Erdélyi F; Hájos N
    J Neurosci; 2021 May; 41(21):4575-4595. PubMed ID: 33837051
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cells in the posterior thalamus project to both amygdala and temporal cortex: a quantitative retrograde double-labeling study in the rat.
    Doron NN; Ledoux JE
    J Comp Neurol; 2000 Sep; 425(2):257-74. PubMed ID: 10954844
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Synaptic Zinc Enhances Inhibition Mediated by Somatostatin, but not Parvalbumin, Cells in Mouse Auditory Cortex.
    Kouvaros S; Kumar M; Tzounopoulos T
    Cereb Cortex; 2020 Jun; 30(7):3895-3909. PubMed ID: 32090251
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Functional properties and projections of neurons in the medial amygdala.
    Keshavarzi S; Sullivan RK; Ianno DJ; Sah P
    J Neurosci; 2014 Jun; 34(26):8699-715. PubMed ID: 24966371
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Recurrent Circuits Amplify Corticofugal Signals and Drive Feedforward Inhibition in the Inferior Colliculus.
    Oberle HM; Ford AN; Czarny JE; Rogalla MM; Apostolides PF
    J Neurosci; 2023 Aug; 43(31):5642-5655. PubMed ID: 37308295
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Network-Level Control of Frequency Tuning in Auditory Cortex.
    Kato HK; Asinof SK; Isaacson JS
    Neuron; 2017 Jul; 95(2):412-423.e4. PubMed ID: 28689982
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Diversity of Receptive Fields and Sideband Inhibition with Complex Thalamocortical and Intracortical Origin in L2/3 of Mouse Primary Auditory Cortex.
    Liu J; Kanold PO
    J Neurosci; 2021 Apr; 41(14):3142-3162. PubMed ID: 33593857
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Whole-Brain Map of Long-Range Monosynaptic Inputs to Different Cell Types in the Amygdala of the Mouse.
    Fu JY; Yu XD; Zhu Y; Xie SZ; Tang MY; Yu B; Li XM
    Neurosci Bull; 2020 Nov; 36(11):1381-1394. PubMed ID: 32691225
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Prefrontal GABAergic Interneurons Gate Long-Range Afferents to Regulate Prefrontal Cortex-Associated Complex Behaviors.
    Yang SS; Mack NR; Shu Y; Gao WJ
    Front Neural Circuits; 2021; 15():716408. PubMed ID: 34322002
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The local and long-range input landscape of inhibitory neurons in mouse auditory cortex.
    Tasaka GI; Maggi C; Taha E; Mizrahi A
    J Comp Neurol; 2023 Mar; 531(4):502-514. PubMed ID: 36453284
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Optogenetic activation of presynaptic inputs in lateral amygdala forms associative fear memory.
    Kwon JT; Nakajima R; Kim HS; Jeong Y; Augustine GJ; Han JH
    Learn Mem; 2014 Nov; 21(11):627-33. PubMed ID: 25322798
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dissociated Role of Thalamic and Cortical Input to the Lateral Amygdala for Consolidation of Long-Term Fear Memory.
    Lee Y; Oh JP; Han JH
    J Neurosci; 2021 Nov; 41(46):9561-9570. PubMed ID: 34667069
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.