These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 38493384)

  • 1. Emerging Role of Fibroblasts in Vitiligo: A Formerly Underestimated Rising Star.
    Wu Y; Yang Y; Lin Y; Ding Y; Liu Z; Xiang L; Picardo M; Zhang C
    J Invest Dermatol; 2024 Aug; 144(8):1696-1706. PubMed ID: 38493384
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vivo and in vitro evidence of dermal fibroblasts influence on human epidermal pigmentation.
    Cario-André M; Pain C; Gauthier Y; Casoli V; Taieb A
    Pigment Cell Res; 2006 Oct; 19(5):434-42. PubMed ID: 16965272
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Involvement of non-melanocytic skin cells in vitiligo.
    Bastonini E; Bellei B; Filoni A; Kovacs D; Iacovelli P; Picardo M
    Exp Dermatol; 2019 Jun; 28(6):667-673. PubMed ID: 30582762
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of Dickkopf1 on the senescence of melanocytes: in vitro study.
    Rani S; Chauhan R; Parsad D; Kumar R
    Arch Dermatol Res; 2018 May; 310(4):343-350. PubMed ID: 29442138
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dysfunction of Autophagy: A Possible Mechanism Involved in the Pathogenesis of Vitiligo by Breaking the Redox Balance of Melanocytes.
    Qiao Z; Wang X; Xiang L; Zhang C
    Oxid Med Cell Longev; 2016; 2016():3401570. PubMed ID: 28018522
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Precise role of dermal fibroblasts on melanocyte pigmentation.
    Wang Y; Viennet C; Robin S; Berthon JY; He L; Humbert P
    J Dermatol Sci; 2017 Nov; 88(2):159-166. PubMed ID: 28711237
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Immunolocalization of tenascin-C in vitiligo.
    Abdou AG; Maraee AH; Shoeib MA; Elbana R
    Appl Immunohistochem Mol Morphol; 2012 Oct; 20(5):501-11. PubMed ID: 22495383
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The impaired unfolded protein-premelanosome protein and transient receptor potential channels-autophagy axes in apoptotic melanocytes in vitiligo.
    Xie B; Song X
    Pigment Cell Melanoma Res; 2022 Jan; 35(1):6-17. PubMed ID: 34333860
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differences in the melanosome distribution within the epidermal melanin units and its association with the impairing background of leukoderma in vitiligo and halo nevi: a retrospective study.
    Xiong XX; Ding GZ; Zhao WE; Li X; Ling YT; Sun L; Gong QL; Lu Y
    Arch Dermatol Res; 2017 Jul; 309(5):323-333. PubMed ID: 28314912
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The enigma and challenges of vitiligo pathophysiology and treatment.
    Abdel-Malek ZA; Jordan C; Ho T; Upadhyay PR; Fleischer A; Hamzavi I
    Pigment Cell Melanoma Res; 2020 Nov; 33(6):778-787. PubMed ID: 32198977
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A protective role for autophagy in vitiligo.
    Bastonini E; Kovacs D; Raffa S; Delle Macchie M; Pacifico A; Iacovelli P; Torrisi MR; Picardo M
    Cell Death Dis; 2021 Mar; 12(4):318. PubMed ID: 33767135
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Role of the NKG2D in Vitiligo.
    Plaza-Rojas L; Guevara-Patiño JA
    Front Immunol; 2021; 12():624131. PubMed ID: 33717132
    [TBL] [Abstract][Full Text] [Related]  

  • 13. S100B: Correlation with Active Vitiligo Depigmentation.
    Birlea SA
    J Invest Dermatol; 2017 Jul; 137(7):1408-1410. PubMed ID: 28647026
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The melanocytorrhagic hypothesis of vitiligo tested on pigmented, stressed, reconstructed epidermis.
    Cario-André M; Pain C; Gauthier Y; Taïeb A
    Pigment Cell Res; 2007 Oct; 20(5):385-93. PubMed ID: 17850512
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Senescence in the lesional fibroblasts of non-segmental vitiligo patients.
    Rani S; Bhardwaj S; Srivastava N; Sharma VL; Parsad D; Kumar R
    Arch Dermatol Res; 2017 Mar; 309(2):123-132. PubMed ID: 28078437
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Occludin Promotes Adhesion of CD8
    Zou P; Xiao Y; Deng Q; Shi Y; You R; Pi Z; Liu J; Zhan Y; Zeng Q; Zeng Z; Xiao R
    Oxid Med Cell Longev; 2022; 2022():6732972. PubMed ID: 35222802
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vitiligo Skin: Exploring the Dermal Compartment.
    Kovacs D; Bastonini E; Ottaviani M; Cota C; Migliano E; Dell'Anna ML; Picardo M
    J Invest Dermatol; 2018 Feb; 138(2):394-404. PubMed ID: 29024688
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxidative stress-induced hypermethylation and low expression of ANXA2R: Novel insights into the dysfunction of melanocytes in vitiligo.
    Chen J; Wang Y; Dai W; Xu X; Ni Q; Yi X; Kang P; Ma J; Wu L; Li C; Li S
    J Dermatol Sci; 2024 Jun; 114(3):115-123. PubMed ID: 38806323
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MicroRNA-155 is Dysregulated in the Skin of Patients with Vitiligo and Inhibits Melanogenesis-associated Genes in Melanocytes and Keratinocytes.
    Šahmatova L; Tankov S; Prans E; Aab A; Hermann H; Reemann P; Pihlap M; Karelson M; Abram K; Kisand K; Kingo K; Rebane A
    Acta Derm Venereol; 2016 Aug; 96(6):742-7. PubMed ID: 26941046
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Presence of T cells and macrophages in inflammatory vitiligo skin parallels melanocyte disappearance.
    Le Poole IC; van den Wijngaard RM; Westerhof W; Das PK
    Am J Pathol; 1996 Apr; 148(4):1219-28. PubMed ID: 8644862
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.