BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 38493512)

  • 1. Non-destructive detection of defective maize kernels using hyperspectral imaging and convolutional neural network with attention module.
    Yang D; Zhou Y; Jie Y; Li Q; Shi T
    Spectrochim Acta A Mol Biomol Spectrosc; 2024 May; 313():124166. PubMed ID: 38493512
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Non-destructive detection and classification of textile fibres based on hyperspectral imaging and 1D-CNN.
    Huang J; He H; Lv R; Zhang G; Zhou Z; Wang X
    Anal Chim Acta; 2022 Sep; 1224():340238. PubMed ID: 35998989
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Discrimination of unsound wheat kernels based on deep convolutional generative adversarial network and near-infrared hyperspectral imaging technology.
    Li H; Zhang L; Sun H; Rao Z; Ji H
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Mar; 268():120722. PubMed ID: 34902690
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep convolutional neural network based hyperspectral brain tissue classification.
    Poonkuzhali P; Helen Prabha K
    J Xray Sci Technol; 2023; 31(4):777-796. PubMed ID: 37182861
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of Defective Maize Seeds Using Hyperspectral Imaging Combined with Deep Learning.
    Xu P; Sun W; Xu K; Zhang Y; Tan Q; Qing Y; Yang R
    Foods; 2022 Dec; 12(1):. PubMed ID: 36613360
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of Maize Kernel Vigor under Different Accelerated Aging Times Using Hyperspectral Imaging.
    Feng L; Zhu S; Zhang C; Bao Y; Feng X; He Y
    Molecules; 2018 Nov; 23(12):. PubMed ID: 30477266
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Discrimination of Deoxynivalenol Levels of Barley Kernels Using Hyperspectral Imaging in Tandem with Optimized Convolutional Neural Network.
    Fan KJ; Liu BY; Su WH
    Sensors (Basel); 2023 Feb; 23(5):. PubMed ID: 36904871
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Blood Stain Classification with Hyperspectral Imaging and Deep Neural Networks.
    Książek K; Romaszewski M; Głomb P; Grabowski B; Cholewa M
    Sensors (Basel); 2020 Nov; 20(22):. PubMed ID: 33233358
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of Turtle-Shell Growth Year Using Hyperspectral Imaging Combined with an Enhanced Spatial-Spectral Attention 3DCNN and a Transformer.
    Wang T; Xu Z; Hu H; Xu H; Zhao Y; Mao X
    Molecules; 2023 Sep; 28(17):. PubMed ID: 37687257
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automatic detection of head and neck squamous cell carcinoma on histologic slides using hyperspectral microscopic imaging.
    Ma L; Little JV; Chen AY; Myers L; Sumer BD; Fei B
    J Biomed Opt; 2022 Apr; 27(4):. PubMed ID: 35484692
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Classification of Fluorescently Labelled Maize Kernels Using Convolutional Neural Networks.
    Wang Z; Guan B; Tang W; Wu S; Ma X; Niu H; Wan X; Zang Y
    Sensors (Basel); 2023 Mar; 23(5):. PubMed ID: 36905044
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction of oil content in single maize kernel based on hyperspectral imaging and attention convolution neural network.
    Zhang L; An D; Wei Y; Liu J; Wu J
    Food Chem; 2022 Nov; 395():133563. PubMed ID: 35763927
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hyperspectral imaging-based cutaneous wound classification using neighbourhood extraction 3D convolutional neural network.
    Cihan M; Ceylan M
    Biomed Tech (Berl); 2023 Aug; 68(4):427-435. PubMed ID: 36862718
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of long-wave near infrared hyperspectral imaging for determination of moisture content of single maize seed.
    Wang Z; Fan S; Wu J; Zhang C; Xu F; Yang X; Li J
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 Jun; 254():119666. PubMed ID: 33744703
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of the variety of maize seeds based on hyperspectral images coupled with convolutional neural networks and subregional voting.
    Zhou Q; Huang W; Tian X; Yang Y; Liang D
    J Sci Food Agric; 2021 Aug; 101(11):4532-4542. PubMed ID: 33452811
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Near-infrared hyperspectral imaging technology combined with deep convolutional generative adversarial network to predict oil content of single maize kernel.
    Zhang L; Wang Y; Wei Y; An D
    Food Chem; 2022 Feb; 370():131047. PubMed ID: 34626928
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determination of hardness for maize kernels based on hyperspectral imaging.
    Qiao M; Xu Y; Xia G; Su Y; Lu B; Gao X; Fan H
    Food Chem; 2022 Jan; 366():130559. PubMed ID: 34289440
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Supervised Machine Learning Methods and Hyperspectral Imaging Techniques Jointly Applied for Brain Cancer Classification.
    Urbanos G; Martín A; Vázquez G; Villanueva M; Villa M; Jimenez-Roldan L; Chavarrías M; Lagares A; Juárez E; Sanz C
    Sensors (Basel); 2021 May; 21(11):. PubMed ID: 34073145
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nondestructive Classification of Maize Moldy Seeds by Hyperspectral Imaging and Optimal Machine Learning Algorithms.
    Hu Y; Wang Z; Li X; Li L; Wang X; Wei Y
    Sensors (Basel); 2022 Aug; 22(16):. PubMed ID: 36015825
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detecting different pesticide residues on Hami melon surface using hyperspectral imaging combined with 1D-CNN and information fusion.
    Hu Y; Ma B; Wang H; Zhang Y; Li Y; Yu G
    Front Plant Sci; 2023; 14():1105601. PubMed ID: 37223822
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.