BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 38493546)

  • 1. StresSense: Real-Time detection of stress-displaying behaviors.
    Saddaf Khan N; Qadir S; Anjum G; Uddin N
    Int J Med Inform; 2024 May; 185():105401. PubMed ID: 38493546
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Robust Deep Learning Approach for Position-Independent Smartphone-Based Human Activity Recognition.
    Almaslukh B; Artoli AM; Al-Muhtadi J
    Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30388855
    [TBL] [Abstract][Full Text] [Related]  

  • 3. "Next-generation psychiatric assessment: Using smartphone sensors to monitor behavior and mental health": Correction to Ben-Zeev et al. (2015).
    Psychiatr Rehabil J; 2015 Dec; 38(4):313. PubMed ID: 26691997
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Applying Multivariate Segmentation Methods to Human Activity Recognition From Wearable Sensors' Data.
    Li K; Habre R; Deng H; Urman R; Morrison J; Gilliland FD; Ambite JL; Stripelis D; Chiang YY; Lin Y; Bui AA; King C; Hosseini A; Vliet EV; Sarrafzadeh M; Eckel SP
    JMIR Mhealth Uhealth; 2019 Feb; 7(2):e11201. PubMed ID: 30730297
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Using a Hybrid Neural Network and a Regularized Extreme Learning Machine for Human Activity Recognition with Smartphone and Smartwatch.
    Tan TH; Shih JY; Liu SH; Alkhaleefah M; Chang YL; Gochoo M
    Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36992065
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deep CNN-LSTM With Self-Attention Model for Human Activity Recognition Using Wearable Sensor.
    Khatun MA; Yousuf MA; Ahmed S; Uddin MZ; Alyami SA; Al-Ashhab S; Akhdar HF; Khan A; Azad A; Moni MA
    IEEE J Transl Eng Health Med; 2022; 10():2700316. PubMed ID: 35795873
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A wearable sensors dataset for stress & boredom associated activity recognition.
    Qadir S; Khan NS; Anjum G; Uddin N
    Data Brief; 2024 Jun; 54():110550. PubMed ID: 38868383
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ensem-HAR: An Ensemble Deep Learning Model for Smartphone Sensor-Based Human Activity Recognition for Measurement of Elderly Health Monitoring.
    Bhattacharya D; Sharma D; Kim W; Ijaz MF; Singh PK
    Biosensors (Basel); 2022 Jun; 12(6):. PubMed ID: 35735541
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep Learning-Based Human Activity Real-Time Recognition for Pedestrian Navigation.
    Ye J; Li X; Zhang X; Zhang Q; Chen W
    Sensors (Basel); 2020 Apr; 20(9):. PubMed ID: 32366055
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Federated Learning for Privacy Preservation of Healthcare Data From Smartphone-Based Side-Channel Attacks.
    Rehman A; Razzak I; Xu G
    IEEE J Biomed Health Inform; 2023 Feb; 27(2):684-690. PubMed ID: 35503855
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A hybrid deep approach to recognizing student activity and monitoring health physique based on accelerometer data from smartphones.
    Xiao L; Luo K; Liu J; Foroughi A
    Sci Rep; 2024 Jun; 14(1):14006. PubMed ID: 38890409
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Next-generation psychiatric assessment: Using smartphone sensors to monitor behavior and mental health.
    Ben-Zeev D; Scherer EA; Wang R; Xie H; Campbell AT
    Psychiatr Rehabil J; 2015 Sep; 38(3):218-226. PubMed ID: 25844912
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identifying Objective Physiological Markers and Modifiable Behaviors for Self-Reported Stress and Mental Health Status Using Wearable Sensors and Mobile Phones: Observational Study.
    Sano A; Taylor S; McHill AW; Phillips AJ; Barger LK; Klerman E; Picard R
    J Med Internet Res; 2018 Jun; 20(6):e210. PubMed ID: 29884610
    [TBL] [Abstract][Full Text] [Related]  

  • 14. HIT HAR: Human Image Threshing Machine for Human Activity Recognition Using Deep Learning Models.
    Poulose A; Kim JH; Han DS
    Comput Intell Neurosci; 2022; 2022():1808990. PubMed ID: 36248917
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wrist-Based Electrodermal Activity Monitoring for Stress Detection Using Federated Learning.
    Almadhor A; Sampedro GA; Abisado M; Abbas S; Kim YJ; Khan MA; Baili J; Cha JH
    Sensors (Basel); 2023 Apr; 23(8):. PubMed ID: 37112323
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Passive Sensing of Health Outcomes Through Smartphones: Systematic Review of Current Solutions and Possible Limitations.
    Trifan A; Oliveira M; Oliveira JL
    JMIR Mhealth Uhealth; 2019 Aug; 7(8):e12649. PubMed ID: 31444874
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Android Spyware Detection Using Machine Learning: A Novel Dataset.
    Qabalin MK; Naser M; Alkasassbeh M
    Sensors (Basel); 2022 Aug; 22(15):. PubMed ID: 35957337
    [TBL] [Abstract][Full Text] [Related]  

  • 18. w-HAR: An Activity Recognition Dataset and Framework Using Low-Power Wearable Devices.
    Bhat G; Tran N; Shill H; Ogras UY
    Sensors (Basel); 2020 Sep; 20(18):. PubMed ID: 32962046
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Testing Suicide Risk Prediction Algorithms Using Phone Measurements With Patients in Acute Mental Health Settings: Feasibility Study.
    Haines-Delmont A; Chahal G; Bruen AJ; Wall A; Khan CT; Sadashiv R; Fearnley D
    JMIR Mhealth Uhealth; 2020 Jun; 8(6):e15901. PubMed ID: 32442152
    [TBL] [Abstract][Full Text] [Related]  

  • 20. LSTM Networks Using Smartphone Data for Sensor-Based Human Activity Recognition in Smart Homes.
    Mekruksavanich S; Jitpattanakul A
    Sensors (Basel); 2021 Feb; 21(5):. PubMed ID: 33652697
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.