These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 38493606)
1. Speciation and distribution of arsenic in cold seep sediments of the South China Sea. Wang X; Wang J; Mao SH; Zhou Z; Liu Q; He Q; Zhuang GC Mar Pollut Bull; 2024 May; 202():116258. PubMed ID: 38493606 [TBL] [Abstract][Full Text] [Related]
2. Unexpected genetic and microbial diversity for arsenic cycling in deep sea cold seep sediments. Zhang C; Liu X; Shi LD; Li J; Xiao X; Shao Z; Dong X NPJ Biofilms Microbiomes; 2023 Mar; 9(1):13. PubMed ID: 36991068 [TBL] [Abstract][Full Text] [Related]
3. Characteristics of Authigenic Minerals around the Sulfate-Methane Transition Zone in the Methane-Rich Sediments of the Northern South China Sea: Inorganic Geochemical Evidence. Wu D; Sun T; Xie R; Pan M; Chen X; Ye Y; Liu L; Wu N Int J Environ Res Public Health; 2019 Jun; 16(13):. PubMed ID: 31261753 [TBL] [Abstract][Full Text] [Related]
4. Methane-metabolizing microbial communities in sediments of the Haima cold seep area, northwest slope of the South China Sea. Niu M; Fan X; Zhuang G; Liang Q; Wang F FEMS Microbiol Ecol; 2017 Sep; 93(9):. PubMed ID: 28934399 [TBL] [Abstract][Full Text] [Related]
5. Nutrient distribution and structure affect the behavior and speciation of arsenic in coastal waters: A case study in southwestern coast of the Laizhou Bay, China. Zhang J; Zhang M; Zhang S; Xu Q; Liu X; Zhang Z Mar Pollut Bull; 2019 Sep; 146():377-386. PubMed ID: 31426170 [TBL] [Abstract][Full Text] [Related]
6. Cold Seeps on the Passive Northern U.S. Atlantic Margin Host Globally Representative Members of the Seep Microbiome with Locally Dominant Strains of Archaea. Semler AC; Fortney JL; Fulweiler RW; Dekas AE Appl Environ Microbiol; 2022 Jun; 88(11):e0046822. PubMed ID: 35607968 [TBL] [Abstract][Full Text] [Related]
7. Methane supply drives prokaryotic community assembly and networks at cold seeps of the South China Sea. Niu M; Deng L; Su L; Ruff SE; Yang N; Luo M; Qi Q; Li J; Wang F Mol Ecol; 2023 Feb; 32(3):660-679. PubMed ID: 36408814 [TBL] [Abstract][Full Text] [Related]
8. Metal/metalloid and phosphorus characteristics in porewater associated with manganese geochemistry: A case study in the Jiulong River Estuary, China. Pan F; Liu H; Guo Z; Cai Y; Fu Y; Wu J; Wang B; Gao A Environ Pollut; 2019 Dec; 255(Pt 1):113134. PubMed ID: 31520910 [TBL] [Abstract][Full Text] [Related]
9. Arsenic speciation in wild marine organisms and a health risk assessment in a subtropical bay of China. Zhang W; Guo Z; Song D; Du S; Zhang L Sci Total Environ; 2018 Jun; 626():621-629. PubMed ID: 29358141 [TBL] [Abstract][Full Text] [Related]
10. [Arsenic speciation and bioavailability in the Yangtze estuary in spring, 2006]. Huang QH; Ma ZW; Li JH; Dong LX; Chen L Huan Jing Ke Xue; 2008 Aug; 29(8):2131-6. PubMed ID: 18839561 [TBL] [Abstract][Full Text] [Related]
11. Cold seep nitrogen fixation and its potential relationship with sulfur cycling. Quan Q; Liu J; Xia X; Zhang S; Ke Z; Wang M; Tan Y Microbiol Spectr; 2024 Oct; 12(10):e0053624. PubMed ID: 39171911 [TBL] [Abstract][Full Text] [Related]
12. A gel probe equilibrium sampler for measuring arsenic porewater profiles and sorption gradients in sediments: II. Field application to Haiwee Reservoir sediment. Campbell KM; Root R; O'Day PA; Hering JG Environ Sci Technol; 2008 Jan; 42(2):504-10. PubMed ID: 18284154 [TBL] [Abstract][Full Text] [Related]
13. Effect of microbially mediated iron mineral transformation on temporal variation of arsenic in the Pleistocene aquifers of the central Yangtze River basin. Deng Y; Zheng T; Wang Y; Liu L; Jiang H; Ma T Sci Total Environ; 2018 Apr; 619-620():1247-1258. PubMed ID: 29734603 [TBL] [Abstract][Full Text] [Related]
14. Controls on arsenic speciation and solid-phase partitioning in the sediments of a two-basin lake. Jay JA; Blute NK; Lin K; Senn D; Hemond HF; Durant JL Environ Sci Technol; 2005 Dec; 39(23):9174-81. PubMed ID: 16382939 [TBL] [Abstract][Full Text] [Related]
15. Hydrochemical processes controlling arsenic and selenium in the Changjiang River (Yangtze River) system. Yao QZ; Zhang J; Wu Y; Xiong H Sci Total Environ; 2007 May; 377(1):93-104. PubMed ID: 17346780 [TBL] [Abstract][Full Text] [Related]
16. Occurrence of microplastics in the Haima cold seep area of the South China Sea. Zhang D; Li J; Ju P; Cao W; Jiang F; Sun C Sci Total Environ; 2024 Jul; 934():173072. PubMed ID: 38734093 [TBL] [Abstract][Full Text] [Related]
17. Implications of organic matter on arsenic mobilization into groundwater: evidence from northwestern (Chapai-Nawabganj), central (Manikganj) and southeastern (Chandpur) Bangladesh. Reza AH; Jean JS; Lee MK; Liu CC; Bundschuh J; Yang HJ; Lee JF; Lee YC Water Res; 2010 Nov; 44(19):5556-74. PubMed ID: 20875661 [TBL] [Abstract][Full Text] [Related]
18. Chemical speciation and ecological risk assessment of arsenic in marine sediments from Izmir Bay (Eastern Aegean Sea). Gonul LT Environ Sci Pollut Res Int; 2015 Dec; 22(24):19951-60. PubMed ID: 26289331 [TBL] [Abstract][Full Text] [Related]
19. Geochemical cycling of arsenic in a coastal aquifer. Bone SE; Gonneea ME; Charette MA Environ Sci Technol; 2006 May; 40(10):3273-8. PubMed ID: 16749693 [TBL] [Abstract][Full Text] [Related]
20. Arsenic speciation in environmental multimedia samples from the Youngsan River Estuary, Korea: A comparison between freshwater and saltwater. Hong S; Choi SD; Khim JS Environ Pollut; 2018 Jun; 237():842-850. PubMed ID: 29146201 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]