These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
117 related articles for article (PubMed ID: 38493625)
1. Deciphering silver nanoparticles perturbation effects and risks for soil enzymes worldwide: Insights from machine learning and soil property integration. Zhang Z; Lin J; Owens G; Chen Z J Hazard Mater; 2024 May; 469():134052. PubMed ID: 38493625 [TBL] [Abstract][Full Text] [Related]
2. Retention of silver nano-particles and silver ions in calcareous soils: Influence of soil properties. Rahmatpour S; Shirvani M; Mosaddeghi MR; Bazarganipour M J Environ Manage; 2017 May; 193():136-145. PubMed ID: 28213297 [TBL] [Abstract][Full Text] [Related]
3. Tracking the Transport of Silver Nanoparticles in Soil: a Saturated Column Experiment. Mahdi KNM; Peters R; van der Ploeg M; Ritsema C; Geissen V Water Air Soil Pollut; 2018; 229(10):334. PubMed ID: 30416217 [TBL] [Abstract][Full Text] [Related]
4. Sorption and dissolution of bare and coated silver nanoparticles in soil suspensions--Influence of soil and particle characteristics. Hedberg J; Oromieh AG; Kleja DB; Wallinder IO J Environ Sci Health A Tox Hazard Subst Environ Eng; 2015; 50(9):891-900. PubMed ID: 26061202 [TBL] [Abstract][Full Text] [Related]
5. Predicting the effect of silver nanoparticles on soil enzyme activity using the machine learning method: type, size, dose and exposure time. Zhang Z; Lin J; Chen Z J Hazard Mater; 2023 Sep; 457():131789. PubMed ID: 37301072 [TBL] [Abstract][Full Text] [Related]
6. Retention and remobilization of stabilized silver nanoparticles in an undisturbed loamy sand soil. Liang Y; Bradford SA; Simunek J; Heggen M; Vereecken H; Klumpp E Environ Sci Technol; 2013; 47(21):12229-37. PubMed ID: 24106877 [TBL] [Abstract][Full Text] [Related]
7. Vulnerability of tropical forest ecosystems and forest dependent communities to droughts. Vogt DJ; Vogt KA; Gmur SJ; Scullion JJ; Suntana AS; Daryanto S; Sigurðardóttir R Environ Res; 2016 Jan; 144(Pt B):27-38. PubMed ID: 26552634 [TBL] [Abstract][Full Text] [Related]
8. Organic amendments exacerbate the effects of silver nanoparticles on microbial biomass and community composition of a semiarid soil. Montes de Oca-Vásquez G; Solano-Campos F; Vega-Baudrit JR; López-Mondéjar R; Vera A; Moreno JL; Bastida F Sci Total Environ; 2020 Nov; 744():140919. PubMed ID: 32711321 [TBL] [Abstract][Full Text] [Related]
9. Transport of silver nanoparticles (AgNPs) in soil. Sagee O; Dror I; Berkowitz B Chemosphere; 2012 Jul; 88(5):670-5. PubMed ID: 22516207 [TBL] [Abstract][Full Text] [Related]
10. Evidence on enhanced transport and release of silver nanoparticles by colloids in soil due to modification of grain surface morphology and co-transport. Liang Y; Luo Y; Lu Z; Klumpp E; Shen C; Bradford SA Environ Pollut; 2021 May; 276():116661. PubMed ID: 33592438 [TBL] [Abstract][Full Text] [Related]
11. Montmorillonite clay alters toxicity of silver nanoparticles in zebrafish (Danio rerio) eleutheroembryo. Gupta GS; Dhawan A; Shanker R Chemosphere; 2016 Nov; 163():242-251. PubMed ID: 27537402 [TBL] [Abstract][Full Text] [Related]
12. Soil texture, infective juvenile concentration, and soil organic matter influence the efficacy of Lankin G; Vidal-Retes G; Allende G; Castaneda-Alvarez C; San-Blas E; Aballay E J Nematol; 2020; 52():1-11. PubMed ID: 32185943 [TBL] [Abstract][Full Text] [Related]
13. Effects of silver nanoparticles on soil enzyme activities with and without added organic matter. Peyrot C; Wilkinson KJ; Desrosiers M; Sauvé S Environ Toxicol Chem; 2014 Jan; 33(1):115-25. PubMed ID: 24115203 [TBL] [Abstract][Full Text] [Related]
14. Oral bioaccessibility of silver nanoparticles and ions in natural soils: Importance of soil properties. Dang F; Jiang Y; Li M; Zhong H; Peijnenburg WGM; Shi W; Zhou D Environ Pollut; 2018 Dec; 243(Pt A):364-373. PubMed ID: 30199811 [TBL] [Abstract][Full Text] [Related]
15. Sorption of 3,4-dichloroaniline on four contrasting Greek agricultural soils and the effect of liming. Droulia FE; Kati V; Giannopolitis CN J Environ Sci Health B; 2011; 46(5):404-10. PubMed ID: 21614714 [TBL] [Abstract][Full Text] [Related]
16. Divergent responses of earthworms (Eisenia fetida) in sandy loam and clay soils to cerium dioxide nanoparticles. Chen D; Xu W; Cao S; Xia Y; Du W; Yin Y; Guo H Environ Sci Pollut Res Int; 2023 Jan; 30(2):5231-5241. PubMed ID: 35982389 [TBL] [Abstract][Full Text] [Related]
17. Evidence for the inhibitory effects of silver nanoparticles on the activities of soil exoenzymes. Shin YJ; Kwak JI; An YJ Chemosphere; 2012 Jul; 88(4):524-9. PubMed ID: 22513336 [TBL] [Abstract][Full Text] [Related]
18. Relation between various soil phosphorus extraction methods and sorption parameters in calcareous soils with different texture. Jalali M; Jalali M Sci Total Environ; 2016 Oct; 566-567():1080-1093. PubMed ID: 27297266 [TBL] [Abstract][Full Text] [Related]
19. Effect of silver nano-particles on soil microbial growth, activity and community diversity in a sandy loam soil. Samarajeewa AD; Velicogna JR; Princz JI; Subasinghe RM; Scroggins RP; Beaudette LA Environ Pollut; 2017 Jan; 220(Pt A):504-513. PubMed ID: 27717530 [TBL] [Abstract][Full Text] [Related]
20. Properties of silver nanoparticles influencing their uptake in and toxicity to the earthworm Lumbricus rubellus following exposure in soil. Makama S; Piella J; Undas A; Dimmers WJ; Peters R; Puntes VF; van den Brink NW Environ Pollut; 2016 Nov; 218():870-878. PubMed ID: 27524251 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]