These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 3849377)

  • 1. Localization of current dipole within a sphere by magnetic measurements.
    Lessard CS; Wu H; Winston J
    Comput Methods Programs Biomed; 1985 May; 20(1):45-9. PubMed ID: 3849377
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Locating accuracy of a current source of neuromagnetic responses: simulation study for a single current dipole in a spherical conductor.
    Kuriki S; Murase M; Takeuchi F
    Electroencephalogr Clin Neurophysiol; 1989 Dec; 73(6):499-506. PubMed ID: 2480884
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MRI detection of weak magnetic fields due to an extended current dipole in a conducting sphere: a model for direct detection of neuronal currents in the brain.
    Konn D; Gowland P; Bowtell R
    Magn Reson Med; 2003 Jul; 50(1):40-9. PubMed ID: 12815677
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dipole-tracing method applied to human brain potentials.
    Homma S; Nakajima Y; Musha T; Okamoto Y; He B
    J Neurosci Methods; 1987 Oct; 21(2-4):195-200. PubMed ID: 3682875
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Magnetostatic image current and its application to an analytic identification of a current dipole inside a conducting sphere.
    He S; Norgren M
    IEEE Trans Biomed Eng; 2000 Feb; 47(2):183-91. PubMed ID: 10721625
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A method for localization of sources of human cerebral potentials evoked by sensory stimuli.
    Sidman RD; Giambalvo V; Allison T; Bergey P
    Sens Processes; 1978 Jun; 2(2):116-29. PubMed ID: 715467
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The magnetic field inside special conducting geometries due to internal current.
    Heller L; Ranken D; Best E
    IEEE Trans Biomed Eng; 2004 Aug; 51(8):1310-8. PubMed ID: 15311815
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the influence of volume currents and extended sources on neuromagnetic fields: a simulation study.
    Haueisen J; Ramon C; Czapski P; Eiselt M
    Ann Biomed Eng; 1995; 23(6):728-39. PubMed ID: 8572423
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Brain stimulation using electromagnetic sources: theoretical aspects.
    Heller L; van Hulsteyn DB
    Biophys J; 1992 Jul; 63(1):129-38. PubMed ID: 1420862
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gender differences in source location for the N100 auditory evoked magnetic field.
    Baumann SB; Rogers RL; Guinto FC; Saydjari CL; Papanicolaou AC; Eisenberg HM
    Electroencephalogr Clin Neurophysiol; 1991; 80(1):53-9. PubMed ID: 1703950
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Part II: magnetic field produced by a current dipole.
    Cohen D; Hosaka H
    J Electrocardiol; 1976; 9(4):409-17. PubMed ID: 978094
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sensitivity of EEG and MEG measurements to tissue conductivity.
    Gençer NG; Acar CE
    Phys Med Biol; 2004 Mar; 49(5):701-17. PubMed ID: 15070197
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Insidious errors in dipole localization parameters at a single time-point due to model misspecification of number of shells.
    Zhang Z; Jewett DL
    Electroencephalogr Clin Neurophysiol; 1993; 88(1):1-11. PubMed ID: 7681385
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Frequency series expansion of an explicit solution for a dipole inside a conducting sphere at low frequency.
    He S
    IEEE Trans Biomed Eng; 1998 Oct; 45(10):1249-58. PubMed ID: 9775539
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of dipole position, orientation and noise on the accuracy of EEG source localization.
    Whittingstall K; Stroink G; Gates L; Connolly JF; Finley A
    Biomed Eng Online; 2003 Jun; 2():14. PubMed ID: 12807534
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Realistic conductivity geometry model of the human head for interpretation of neuromagnetic data.
    Hämäläinen MS; Sarvas J
    IEEE Trans Biomed Eng; 1989 Feb; 36(2):165-71. PubMed ID: 2917762
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the magnetic field distribution generated by a dipolar current source situated in a realistically shaped compartment model of the head.
    Meijs JW; Bosch FG; Peters MJ; Lopes da Silva FH
    Electroencephalogr Clin Neurophysiol; 1987 Mar; 66(3):286-98. PubMed ID: 2434313
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Current dipole localization with an ideal magnetometer system.
    Lütkenhöner B
    IEEE Trans Biomed Eng; 1996 Nov; 43(11):1049-61. PubMed ID: 9214823
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of anisotropic compartments on magnetic field and electric potential distributions generated by artificial current dipoles inside a torso phantom.
    Liehr M; Haueisen J
    Phys Med Biol; 2008 Jan; 53(1):245-54. PubMed ID: 18182700
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dependence of the MEG on dipole orientation in the rabbit head.
    Melcher JR; Cohen D
    Electroencephalogr Clin Neurophysiol; 1988 Nov; 70(5):460-72. PubMed ID: 2460320
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.