These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 38493845)

  • 41. Long-Term Fertilization History Alters Effects of Microplastics on Soil Properties, Microbial Communities, and Functions in Diverse Farmland Ecosystem.
    Li HZ; Zhu D; Lindhardt JH; Lin SM; Ke X; Cui L
    Environ Sci Technol; 2021 Apr; 55(8):4658-4668. PubMed ID: 33754703
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Microplastics increase the microbial functional potential of greenhouse gas emissions and water pollution in a freshwater lake: A metagenomic study.
    Zhuo T; Yu K; Chai B; Tang Q; Gao X; Wang J; He L; Lei X; Li Y; Meng Y; Wu L; Chen B
    Environ Res; 2024 Sep; 257():119250. PubMed ID: 38844031
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Shifts in bacterial diversity, interactions and microbial elemental cycling genes under cadmium contamination in paddy soil: Implications for altered ecological function.
    Li Y; Gao Y; Chen W; Zhang W; Lu X
    J Hazard Mater; 2024 Jan; 461():132544. PubMed ID: 37738847
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Biochar immobilized hydrolase degrades PET microplastics and alleviates the disturbance of soil microbial function via modulating nitrogen and phosphorus cycles.
    Han H; Song P; Jiang Y; Fan J; Khan A; Liu P; MaĊĦek O; Li X
    J Hazard Mater; 2024 Aug; 474():134838. PubMed ID: 38850944
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Distinct influence of conventional and biodegradable microplastics on microbe-driving nitrogen cycling processes in soils and plastispheres as evaluated by metagenomic analysis.
    Hu X; Gu H; Sun X; Wang Y; Liu J; Yu Z; Li Y; Jin J; Wang G
    J Hazard Mater; 2023 Jun; 451():131097. PubMed ID: 36898310
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Laboratory tidal microcosm deciphers responses of sediment archaeal and bacterial communities to microplastic exposure.
    Fang C; He Y; Yang Y; Fu B; Pan S; Jiao F; Wang J; Yang H
    J Hazard Mater; 2023 Sep; 458():131813. PubMed ID: 37339576
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effects of microplastics on carbon release and microbial community in mangrove soil systems.
    Zhou X; Xiao C; Zhang B; Chen T; Yang X
    J Hazard Mater; 2024 Mar; 465():133152. PubMed ID: 38056259
    [TBL] [Abstract][Full Text] [Related]  

  • 48. How do controlled-release fertilizer coated microplastics dynamically affect Cd availability by regulating Fe species and DOC content in soil?
    Zhao M; Liu R; Wang X; Zhang J; Wang J; Cao B; Zhao Y; Xu L; Chen Y; Zou G
    Sci Total Environ; 2022 Dec; 850():157886. PubMed ID: 35952884
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Effect of phenol formaldehyde-associated microplastics on soil microbial community, assembly, and functioning.
    Li H; Luo QP; Zhao S; Zhou YY; Huang FY; Yang XR; Su JQ
    J Hazard Mater; 2023 Feb; 443(Pt B):130288. PubMed ID: 36335899
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The impact of arbuscular mycorrhizal fungi and endophytic bacteria on peanuts under the combined pollution of cadmium and microplastics.
    Pu ZT; Wang DD; Song WX; Wang C; Li ZY; Chen YL; Shimozono T; Yang ZM; Tian YQ; Xie ZH
    J Hazard Mater; 2024 May; 469():133934. PubMed ID: 38447370
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Metagenomic exploration of microbial and enzymatic traits involved in microplastic biodegradation.
    Hu X; Gu H; Sun X; Wang Y; Liu J; Yu Z; Li Y; Jin J; Wang G
    Chemosphere; 2024 Jan; 348():140762. PubMed ID: 38006912
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Soil properties, microbial diversity, and changes in the functionality of saline-alkali soil are driven by microplastics.
    Yuan Y; Zu M; Li R; Zuo J; Tao J
    J Hazard Mater; 2023 Mar; 446():130712. PubMed ID: 36621296
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Microplastics increase soil microbial network complexity and trigger diversity-driven community assembly.
    Li W; Xiao Y
    Environ Pollut; 2023 Sep; 333():122095. PubMed ID: 37385357
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Response of soil micro-ecology to different levels of cadmium in alkaline soil.
    Wu B; Hou S; Peng D; Wang Y; Wang C; Xu F; Xu H
    Ecotoxicol Environ Saf; 2018 Dec; 166():116-122. PubMed ID: 30253286
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Microplastics addition reduced the toxicity and uptake of cadmium to Brassica chinensis L.
    Zhang Z; Li Y; Qiu T; Duan C; Chen L; Zhao S; Zhang X; Fang L
    Sci Total Environ; 2022 Dec; 852():158353. PubMed ID: 36055513
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Shifts in taxonomic and functional microbial diversity with agriculture: How fragile is the Brazilian Cerrado?
    Souza RC; Mendes IC; Reis-Junior FB; Carvalho FM; Nogueira MA; Vasconcelos AT; Vicente VA; Hungria M
    BMC Microbiol; 2016 Mar; 16():42. PubMed ID: 26983403
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Effect of polylactic acid microplastics on soil properties, soil microbials and plant growth.
    Liu R; Liang J; Yang Y; Jiang H; Tian X
    Chemosphere; 2023 Jul; 329():138504. PubMed ID: 37011822
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Manure Microbial Communities and Resistance Profiles Reconfigure after Transition to Manure Pits and Differ from Those in Fertilized Field Soil.
    Sukhum KV; Vargas RC; Boolchandani M; D'Souza AW; Patel S; Kesaraju A; Walljasper G; Hegde H; Ye Z; Valenzuela RK; Gunderson P; Bendixsen C; Dantas G; Shukla SK
    mBio; 2021 May; 12(3):. PubMed ID: 33975936
    [