BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 38493868)

  • 1. Bioremediation of trichloroethylene-contaminated groundwater using green carbon-releasing substrate with pH control capability.
    Lee HC; Chen SC; Sheu YT; Yao CL; Lo KH; Kao CM
    Environ Pollut; 2024 May; 348():123768. PubMed ID: 38493868
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioremediation of trichloroethylene-polluted groundwater using emulsified castor oil for slow carbon release and acidification control.
    Chen WT; Chen KF; Surmpalli RY; Zhang TC; Ou JH; Kao CM
    Water Environ Res; 2022 Jan; 94(1):e1673. PubMed ID: 34861087
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of a long-lasting colloidal substrate with pH and hydrogen sulfide control capabilities to remediate TCE-contaminated groundwater.
    Sheu YT; Chen SC; Chien CC; Chen CC; Kao CM
    J Hazard Mater; 2015 Mar; 284():222-32. PubMed ID: 25463237
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of polycolloid-releasing substrate to remediate trichloroethylene-contaminated groundwater: a pilot-scale study.
    Tsai TT; Liu JK; Chang YM; Chen KF; Kao CM
    J Hazard Mater; 2014 Mar; 268():92-101. PubMed ID: 24468531
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Growth inhibition of sulfate-reducing bacteria for trichloroethylene dechlorination enhancement.
    Lin WH; Chen CC; Sheu YT; Tsang DCW; Lo KH; Kao CM
    Environ Res; 2020 Aug; 187():109629. PubMed ID: 32460090
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of γ-PGA as the primary carbon source to bioremediate a TCE-polluted aquifer: A pilot-scale study.
    Luo SG; Chen SC; Cao WZ; Lin WH; Sheu YT; Kao CM
    Chemosphere; 2019 Dec; 237():124449. PubMed ID: 31376698
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of a slow polycolloid-releasing substrate (SPRS) biobarrier to remediate TCE-contaminated aquifers.
    Liang SH; Kuo YC; Chen SH; Chen CY; Kao CM
    J Hazard Mater; 2013 Jun; 254-255():107-115. PubMed ID: 23611795
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of molecular biological tools for monitoring efficiency of trichloroethylene remediation.
    Wu YJ; Liu PG; Hsu YS; Whang LM; Lin TF; Hung WN; Cho KC
    Chemosphere; 2019 Oct; 233():697-704. PubMed ID: 31195274
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced reductive dechlorination of trichloroethene with immobilized Clostridium butyricum in silica gel.
    Lo KH; Lu CW; Lin WH; Chien CC; Chen SC; Kao CM
    Chemosphere; 2020 Jan; 238():124596. PubMed ID: 31524629
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Removal of chlorine-contaminated groundwater by two-stage ozonation and biostimulation methods.
    Chen YC; Chang JE
    J Environ Manage; 2022 Sep; 317():115417. PubMed ID: 35653838
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An innovative permeable reactive bio-barrier to remediate trichloroethene-contaminated groundwater: A field study.
    Lu CW; Lo KH; Wang SC; Kao CM; Chen SC
    Sci Total Environ; 2024 Apr; 920():170885. PubMed ID: 38342459
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Laboratory column studies for evaluating a barrier system for providing oxygen and substrate for TCE biodegradation.
    Kao CM; Chen SC; Su MC
    Chemosphere; 2001 Aug; 44(5):925-34. PubMed ID: 11513425
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced trichloroethylene biodegradation: Roles of biochar-microbial collaboration beyond adsorption.
    Liu Y; Chen H; Zhao L; Li Z; Yi X; Guo T; Cao X
    Sci Total Environ; 2021 Oct; 792():148451. PubMed ID: 34157525
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of emulsified vegetable oil to support bioremediation of TCE DNAPL in soil columns.
    Harkness M; Fisher A
    J Contam Hydrol; 2013 Aug; 151():16-33. PubMed ID: 23697993
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Use of specific gene analysis to assess the effectiveness of surfactant-enhanced trichloroethylene cometabolism.
    Liang SH; Liu JK; Lee KH; Kuo YC; Kao CM
    J Hazard Mater; 2011 Dec; 198():323-30. PubMed ID: 22071259
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dehalococcoides abundance and alternate electron acceptor effects on large, flow-through trichloroethene dechlorinating columns.
    Mirza BS; Sorensen DL; Dupont RR; McLean JE
    Appl Microbiol Biotechnol; 2016 Mar; 100(5):2367-79. PubMed ID: 26536878
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The importance of proper pH adjustment and control to achieve complete in situ enhanced reductive dechlorination.
    Ortiz-Medina JF; Yuncu B; Ross L; Elkins B
    Integr Environ Assess Manag; 2023 Jul; 19(4):943-948. PubMed ID: 36239064
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adsorbed poly(aspartate) coating limits the adverse effects of dissolved groundwater solutes on Fe
    Phenrat T; Schoenfelder D; Kirschling TL; Tilton RD; Lowry GV
    Environ Sci Pollut Res Int; 2018 Mar; 25(8):7157-7169. PubMed ID: 26233743
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aerobic biodegradation of trichloroethylene and phenol co-contaminants in groundwater by a bacterial community using hydrogen peroxide as the sole oxygen source.
    Li H; Zhang SY; Wang XL; Yang J; Gu JD; Zhu RL; Wang P; Lin KF; Liu YD
    Environ Technol; 2015; 36(5-8):667-74. PubMed ID: 25220534
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Use of statistical tools to evaluate the reductive dechlorination of high levels of TCE in microcosm studies.
    Harkness M; Fisher A; Lee MD; Mack EE; Payne JA; Dworatzek S; Roberts J; Acheson C; Herrmann R; Possolo A
    J Contam Hydrol; 2012 Apr; 131(1-4):100-18. PubMed ID: 22366331
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.