These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 38494204)
1. Unveiling the significance of gastric digestion in gastrointestinal fate of octenylsuccinylated starch-stabilized emulsions. Jo M; Shi YC Carbohydr Polym; 2024 Jun; 333():121953. PubMed ID: 38494204 [TBL] [Abstract][Full Text] [Related]
2. Retrograded octenylsuccinylated maize starch-based emulgels for a promising oral delivery system of curcumin. Jo M; Kim SH; Kim HE; Lee YY; Kim E; Ban C; Choi YJ Carbohydr Polym; 2023 Dec; 322():121341. PubMed ID: 37839845 [TBL] [Abstract][Full Text] [Related]
3. Assessment of dynamic bioaccessibility of curcumin encapsulated in milled starch particle stabilized Pickering emulsions using TNO's gastrointestinal model. Lu X; Zhu J; Pan Y; Huang Q Food Funct; 2019 May; 10(5):2583-2594. PubMed ID: 31011719 [TBL] [Abstract][Full Text] [Related]
4. Combining in vitro digestion model with cell culture model: Assessment of encapsulation and delivery of curcumin in milled starch particle stabilized Pickering emulsions. Lu X; Li C; Huang Q Int J Biol Macromol; 2019 Oct; 139():917-924. PubMed ID: 31401275 [TBL] [Abstract][Full Text] [Related]
6. Stability and in vitro digestion study of curcumin-encapsulated in different milled cellulose particle stabilized Pickering emulsions. Lu X; Huang Q Food Funct; 2020 Jan; 11(1):606-616. PubMed ID: 31859303 [TBL] [Abstract][Full Text] [Related]
7. Polysaccharide-based structured lipid carriers for the delivery of curcumin: An in vitro digestion study. Velderrain-Rodríguez G; Fontes-Candia C; López-Rubio A; Martínez-Sanz M; Martín-Belloso O; Salvia-Trujillo L Colloids Surf B Biointerfaces; 2023 Jul; 227():113349. PubMed ID: 37207385 [TBL] [Abstract][Full Text] [Related]
8. Stability and gastrointestinal behavior of curcumin-loaded emulsion stabilized by multi-conformation soy proteins: Influence of oil volume fraction. Lu J; Wang Y; Cao W; Yan Y; Guo F; Li J; Li W Food Chem; 2024 May; 440():138215. PubMed ID: 38128428 [TBL] [Abstract][Full Text] [Related]
9. The impact of differently structured starch gels on the gastrointestinal fate of a curcumin-containing nanoemulsion. Qazi HJ; Ye A; Acevedo-Fani A; Singh H Food Funct; 2023 Aug; 14(17):7924-7937. PubMed ID: 37548382 [TBL] [Abstract][Full Text] [Related]
10. Kafirin Nanoparticle-Stabilized Pickering Emulsions as Oral Delivery Vehicles: Physicochemical Stability and in Vitro Digestion Profile. Xiao J; Li C; Huang Q J Agric Food Chem; 2015 Dec; 63(47):10263-70. PubMed ID: 26539628 [TBL] [Abstract][Full Text] [Related]
11. Oro-gastro-intestinal digestion of starch in white bread, wheat-based and gluten-free pasta: Unveiling the contribution of human salivary α-amylase. Freitas D; Le Feunteun S Food Chem; 2019 Feb; 274():566-573. PubMed ID: 30372980 [TBL] [Abstract][Full Text] [Related]
12. Study on the fabrication and in vitro digestion behavior of curcumin-loaded emulsions stabilized by succinylated whey protein hydrolysates. Pan Y; Xie QT; Zhu J; Li XM; Meng R; Zhang B; Chen HQ; Jin ZY Food Chem; 2019 Jul; 287():76-84. PubMed ID: 30857721 [TBL] [Abstract][Full Text] [Related]
13. Effects of charge distribution and degree of methylesterification of pectin emulsifier on bioaccessibility of curcumin incorporated in nanoemulsions. Park SY; Kim Y; Lee J; Cameron RG; Moon TW; Lee C; Mun S Int J Biol Macromol; 2024 Nov; 279(Pt 2):135189. PubMed ID: 39216585 [TBL] [Abstract][Full Text] [Related]
14. Comparative study on the in vitro digestion of different lipids in starch-based Pickering emulsions. Song X; Zhai Y; Di X; Zhao Q Int J Biol Macromol; 2023 Dec; 253(Pt 6):127340. PubMed ID: 37820914 [TBL] [Abstract][Full Text] [Related]
15. Bioaccessibility of chlorogenic acid and curcumin co-encapsulated in double emulsions with the inner interface stabilized by functionalized silica nanoparticles. Paredes-Toledo J; Herrera J; Morales J; Robert P; Oyarzun-Ampuero F; Giménez B Food Chem; 2024 Jul; 445():138828. PubMed ID: 38401311 [TBL] [Abstract][Full Text] [Related]
16. Water-in-oil organogel based emulsions as a tool for increasing bioaccessibility and cell permeability of poorly water-soluble nutraceuticals. Ojeda-Serna IE; Rocha-Guzmán NE; Gallegos-Infante JA; Cháirez-Ramírez MH; Rosas-Flores W; Pérez-Martínez JD; Moreno-Jiménez MR; González-Laredo RF Food Res Int; 2019 Jun; 120():415-424. PubMed ID: 31000257 [TBL] [Abstract][Full Text] [Related]
17. Pickering emulsions stabilized by colloidal gel particles complexed or conjugated with biopolymers to enhance bioaccessibility and cellular uptake of curcumin. Araiza-Calahorra A; Wang Y; Boesch C; Zhao Y; Sarkar A Curr Res Food Sci; 2020 Nov; 3():178-188. PubMed ID: 32914133 [TBL] [Abstract][Full Text] [Related]
18. Encapsulation of curcumin within oil-in-water emulsions prepared by premix membrane emulsification: Impact of droplet size and carrier oil type on physicochemical stability and in vitro bioaccessibility. Jiang T; Charcosset C Food Chem; 2022 May; 375():131825. PubMed ID: 34936971 [TBL] [Abstract][Full Text] [Related]
19. Control of β-carotene bioaccessibility using starch-based filled hydrogels. Mun S; Kim YR; McClements DJ Food Chem; 2015 Apr; 173():454-61. PubMed ID: 25466045 [TBL] [Abstract][Full Text] [Related]
20. Colloidal aspects of digestion of Pickering emulsions: Experiments and theoretical models of lipid digestion kinetics. Sarkar A; Zhang S; Holmes M; Ettelaie R Adv Colloid Interface Sci; 2019 Jan; 263():195-211. PubMed ID: 30580767 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]