These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 38494454)
1. The Influence of Ions on the Electrochemical Stability of Aqueous Electrolytes. Sui Y; Scida AM; Li B; Chen C; Fu Y; Fang Y; Greaney PA; Osborn Popp TM; Jiang DE; Fang C; Ji X Angew Chem Int Ed Engl; 2024 May; 63(19):e202401555. PubMed ID: 38494454 [TBL] [Abstract][Full Text] [Related]
2. Water-Ion Interaction Determines the Mobility of Ions in Highly Concentrated Aqueous Electrolytes. Kim J; Koo B; Khammari A; Park K; Lee H; Kwak K; Cho M ACS Appl Mater Interfaces; 2024 Feb; 16(8):10033-10041. PubMed ID: 38373218 [TBL] [Abstract][Full Text] [Related]
3. Continuous medium approach to approximate the high concentrated aqueous electrolyte with different types of electrochemical structure. Maffre M; Wang X; Deng J; Deebansok S; Zhu Y; Favier F; Bélanger D; Fontaine O J Chem Phys; 2023 Sep; 159(10):. PubMed ID: 37702360 [TBL] [Abstract][Full Text] [Related]
4. Strengthening Aqueous Electrolytes without Strengthening Water. Tang L; Xu Y; Zhang W; Sui Y; Scida A; Tachibana SR; Garaga M; Sandstrom SK; Chiu NC; Stylianou KC; Greenbaum SG; Greaney PA; Fang C; Ji X Angew Chem Int Ed Engl; 2023 Aug; 62(35):e202307212. PubMed ID: 37407432 [TBL] [Abstract][Full Text] [Related]
5. Hofmeister anionic effects on hydration electric fields around water and peptide. Kim H; Lee H; Lee G; Kim H; Cho M J Chem Phys; 2012 Mar; 136(12):124501. PubMed ID: 22462868 [TBL] [Abstract][Full Text] [Related]
6. Switching of Redox Levels Leads to High Reductive Stability in Water-in-Salt Electrolytes. Wang F; Sun Y; Cheng J J Am Chem Soc; 2023 Feb; ():. PubMed ID: 36758145 [TBL] [Abstract][Full Text] [Related]
7. Ultrafast dynamics of hydrogen bond exchange in aqueous ionic solutions. Park S; Odelius M; Gaffney KJ J Phys Chem B; 2009 Jun; 113(22):7825-35. PubMed ID: 19435307 [TBL] [Abstract][Full Text] [Related]
8. Metalloporphyrins as Catalytic Models for Studying Hydrogen and Oxygen Evolution and Oxygen Reduction Reactions. Li X; Lei H; Xie L; Wang N; Zhang W; Cao R Acc Chem Res; 2022 Mar; 55(6):878-892. PubMed ID: 35192330 [TBL] [Abstract][Full Text] [Related]
10. Solvation of electrolytes and nonelectrolytes in aqueous solutions. Afanas'ev VN J Phys Chem B; 2011 May; 115(20):6541-63. PubMed ID: 21542579 [TBL] [Abstract][Full Text] [Related]
11. Is "Water in Salt" Electrolytes the Ultimate Solution? Achieving High Stability of Organic Anodes in Diluted Electrolyte Solutions Via a Wise Anions Selection. Nimkar A; Alam K; Bergman G; Levi MD; Major DT; Shpigel N; Aurbach D Angew Chem Int Ed Engl; 2023 Nov; 62(47):e202311373. PubMed ID: 37748032 [TBL] [Abstract][Full Text] [Related]
12. Preferential solvation, ion pairing, and dynamics of concentrated aqueous solutions of divalent metal nitrate salts. Yadav S; Chandra A J Chem Phys; 2017 Dec; 147(24):244503. PubMed ID: 29289137 [TBL] [Abstract][Full Text] [Related]
13. Dilute Aqueous-Aprotic Hybrid Electrolyte Enabling a Wide Electrochemical Window through Solvation Structure Engineering. Wu S; Su B; Sun M; Gu S; Lu Z; Zhang K; Yu DYW; Huang B; Wang P; Lee CS; Zhang W Adv Mater; 2021 Oct; 33(41):e2102390. PubMed ID: 34463369 [TBL] [Abstract][Full Text] [Related]
14. Protonation of a hydroxide anion bridging two divalent magnesium cations in water probed by first-principles metadynamics simulation. Park JM; Boero M J Phys Chem B; 2010 Sep; 114(34):11102-9. PubMed ID: 20695500 [TBL] [Abstract][Full Text] [Related]
15. Optimized Charge Storage in Aza-Based Covalent Organic Frameworks by Tuning Electrolyte Proton Activity. Tian Z; Kale VS; Shi Z; Yin J; Kandambeth S; Wang Y; Emwas AH; Lei Y; Guo X; Ming J; Wang W; Alsadun N; Shekhah O; Eddaoudi M; Alshareef HN ACS Nano; 2023 Jul; 17(14):13961-13973. PubMed ID: 37428125 [TBL] [Abstract][Full Text] [Related]
16. Tuning the Electrolyte Solvation Structure via a Nonaqueous Co-Solvent to Enable High-Voltage Aqueous Lithium-Ion Batteries. Liu D; Yuan L; Li X; Chen J; Xiong R; Meng J; Zhu S; Huang Y ACS Appl Mater Interfaces; 2022 Apr; 14(15):17585-17593. PubMed ID: 35385244 [TBL] [Abstract][Full Text] [Related]
17. Elucidating the cation hydration ratio in water-in-salt electrolytes for carbon-based supercapacitors. Xiao D; Tang X; Zhang L; Xu Z; Liu Q; Dou H; Zhang X Phys Chem Chem Phys; 2022 Dec; 24(48):29512-29519. PubMed ID: 36448472 [TBL] [Abstract][Full Text] [Related]
18. Correlating Substrate Reactivity at Electrified Interfaces with the Electrolyte Structure in Synthetically Relevant Organic Solvent/Water Mixtures. Dorchies F; Serva A; Sidos A; Michot L; Deschamps M; Salanne M; Grimaud A J Am Chem Soc; 2024 Jun; 146(25):17495-17507. PubMed ID: 38863085 [TBL] [Abstract][Full Text] [Related]
19. A Universal Approach to Aqueous Energy Storage via Ultralow-Cost Electrolyte with Super-Concentrated Sugar as Hydrogen-Bond-Regulated Solute. Bi H; Wang X; Liu H; He Y; Wang W; Deng W; Ma X; Wang Y; Rao W; Chai Y; Ma H; Li R; Chen J; Wang Y; Xue M Adv Mater; 2020 Apr; 32(16):e2000074. PubMed ID: 32130746 [TBL] [Abstract][Full Text] [Related]
20. Rocking-Chair Aqueous Fluoride-Ion Batteries Enabled by Hydrogen Bonding Competition. Wang H; Lei C; Liu T; Xu C; He X; Liang X Angew Chem Int Ed Engl; 2024 May; 63(19):e202401483. PubMed ID: 38488325 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]