These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
109 related articles for article (PubMed ID: 38494702)
1. Automated Detection of Cerebral Microbleeds on Two-dimensional Gradient-recalled Echo T2* Weighted Images Using a Morphology Filter Bank and Convolutional Neural Network. Nishioka N; Shimizu Y; Shirai T; Ochi H; Bito Y; Watanabe K; Kameda H; Harada T; Kudo K Magn Reson Med Sci; 2024 Mar; ():. PubMed ID: 38494702 [TBL] [Abstract][Full Text] [Related]
2. CMB-HUNT: Automatic detection of cerebral microbleeds using a deep neural network. Suwalska A; Wang Y; Yuan Z; Jiang Y; Zhu D; Chen J; Cui M; Chen X; Suo C; Polanska J Comput Biol Med; 2022 Dec; 151(Pt A):106233. PubMed ID: 36370581 [TBL] [Abstract][Full Text] [Related]
3. Automated detection of cerebral microbleeds on MR images using knowledge distillation framework. Sundaresan V; Arthofer C; Zamboni G; Murchison AG; Dineen RA; Rothwell PM; Auer DP; Wang C; Miller KL; Tendler BC; Alfaro-Almagro F; Sotiropoulos SN; Sprigg N; Griffanti L; Jenkinson M Front Neuroinform; 2023; 17():1204186. PubMed ID: 37492242 [TBL] [Abstract][Full Text] [Related]
4. Automated detection of cerebral microbleeds in MR images: A two-stage deep learning approach. Al-Masni MA; Kim WR; Kim EY; Noh Y; Kim DH Neuroimage Clin; 2020; 28():102464. PubMed ID: 33395960 [TBL] [Abstract][Full Text] [Related]
5. Improved cerebral microbleeds detection using their magnetic signature on T2*-phase-contrast: A comparison study in a clinical setting. Kaaouana T; Bertrand A; Ouamer F; Law-Ye B; Pyatigorskaya N; Bouyahia A; Thiery N; Dufouil C; Delmaire C; Dormont D; de Rochefort L; Chupin M Neuroimage Clin; 2017; 15():274-283. PubMed ID: 28560152 [TBL] [Abstract][Full Text] [Related]
6. Susceptibility-weighted imaging is more reliable than T2*-weighted gradient-recalled echo MRI for detecting microbleeds. Cheng AL; Batool S; McCreary CR; Lauzon ML; Frayne R; Goyal M; Smith EE Stroke; 2013 Oct; 44(10):2782-6. PubMed ID: 23920014 [TBL] [Abstract][Full Text] [Related]
7. A user-guided tool for semi-automated cerebral microbleed detection and volume segmentation: Evaluating vascular injury and data labelling for machine learning. Morrison MA; Payabvash S; Chen Y; Avadiappan S; Shah M; Zou X; Hess CP; Lupo JM Neuroimage Clin; 2018; 20():498-505. PubMed ID: 30140608 [TBL] [Abstract][Full Text] [Related]
8. Automatic detection of cerebral microbleeds using susceptibility weighted imaging and artificial intelligence. Luo Y; Gao K; Fawaz M; Wu B; Zhong Y; Zhou Y; Haacke EM; Dai Y; Liu S Quant Imaging Med Surg; 2024 Mar; 14(3):2640-2654. PubMed ID: 38545040 [TBL] [Abstract][Full Text] [Related]
9. Automatic Detection of Cerebral Microbleeds From MR Images via 3D Convolutional Neural Networks. Qi Dou ; Hao Chen ; Lequan Yu ; Lei Zhao ; Jing Qin ; Defeng Wang ; Mok VC; Lin Shi ; Pheng-Ann Heng IEEE Trans Med Imaging; 2016 May; 35(5):1182-1195. PubMed ID: 26886975 [TBL] [Abstract][Full Text] [Related]
10. Automated Detection of Candidate Subjects With Cerebral Microbleeds Using Machine Learning. Sundaresan V; Arthofer C; Zamboni G; Dineen RA; Rothwell PM; Sotiropoulos SN; Auer DP; Tozer DJ; Markus HS; Miller KL; Dragonu I; Sprigg N; Alfaro-Almagro F; Jenkinson M; Griffanti L Front Neuroinform; 2021; 15():777828. PubMed ID: 35126079 [TBL] [Abstract][Full Text] [Related]
11. Automated detection of pulmonary nodules in PET/CT images: Ensemble false-positive reduction using a convolutional neural network technique. Teramoto A; Fujita H; Yamamuro O; Tamaki T Med Phys; 2016 Jun; 43(6):2821-2827. PubMed ID: 27277030 [TBL] [Abstract][Full Text] [Related]
12. Automated detection of cerebral microbleeds in patients with Traumatic Brain Injury. van den Heuvel TL; van der Eerden AW; Manniesing R; Ghafoorian M; Tan T; Andriessen TM; Vande Vyvere T; van den Hauwe L; Ter Haar Romeny BM; Goraj BM; Platel B Neuroimage Clin; 2016; 12():241-51. PubMed ID: 27489772 [TBL] [Abstract][Full Text] [Related]
13. Computer-aided detection of radiation-induced cerebral microbleeds on susceptibility-weighted MR images. Bian W; Hess CP; Chang SM; Nelson SJ; Lupo JM Neuroimage Clin; 2013; 2():282-90. PubMed ID: 24179783 [TBL] [Abstract][Full Text] [Related]
14. Novel Approaches to Detection of Cerebral Microbleeds: Single Deep Learning Model to Achieve a Balanced Performance. Myung MJ; Lee KM; Kim HG; Oh J; Lee JY; Shin I; Kim EJ; Lee JS J Stroke Cerebrovasc Dis; 2021 Sep; 30(9):105886. PubMed ID: 34175642 [TBL] [Abstract][Full Text] [Related]
15. Quantitative assessment and correlation analysis of cerebral microbleed distribution and leukoaraiosis in stroke outpatients. Yang Q; Yang Y; Li C; Li J; Liu X; Wang A; Zhao J; Wang M; Zeng X; Fan D Neurol Res; 2015 May; 37(5):403-9. PubMed ID: 25875577 [TBL] [Abstract][Full Text] [Related]
16. A Two Cascaded Network Integrating Regional-based YOLO and 3D-CNN for Cerebral Microbleeds Detection. Al-Masni MA; Kim WR; Kim EY; Noh Y; Kim DH Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():1055-1058. PubMed ID: 33018167 [TBL] [Abstract][Full Text] [Related]
17. Cerebral microbleed detection using Susceptibility Weighted Imaging and deep learning. Liu S; Utriainen D; Chai C; Chen Y; Wang L; Sethi SK; Xia S; Haacke EM Neuroimage; 2019 Sep; 198():271-282. PubMed ID: 31121296 [TBL] [Abstract][Full Text] [Related]
19. Comparison of ESWAN, SWI-SPGR, and 2D T2*-weighted GRE sequence for depicting cerebral microbleeds. Guo LF; Wang G; Zhu XY; Liu C; Cui L Clin Neuroradiol; 2013 Jun; 23(2):121-7. PubMed ID: 23212660 [TBL] [Abstract][Full Text] [Related]
20. Automated detection of cerebral microbleeds via segmentation in susceptibility-weighted images of patients with traumatic brain injury. Koschmieder K; Paul MM; van den Heuvel TLA; van der Eerden AW; van Ginneken B; Manniesing R Neuroimage Clin; 2022; 35():103027. PubMed ID: 35597029 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]