BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 38494870)

  • 1. A smartphone-based standalone fluorescence spectroscopy tool for cervical precancer diagnosis in clinical conditions.
    Shukla S; Deo BS; Vishwakarma C; Mishra S; Ahirwar S; Sah AN; Pandey K; Singh S; Prasad SN; Padhi AK; Pal M; Panigrahi PK; Pradhan A
    J Biophotonics; 2024 Mar; ():e202300468. PubMed ID: 38494870
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Smartphone-based fluorescence spectroscopic device for cervical precancer diagnosis: a random forest classification of in vitro data.
    Shukla S; Vishwakarma C; Sah AN; Ahirwar S; Pandey K; Pradhan A
    Appl Opt; 2023 Sep; 62(25):6826-6834. PubMed ID: 37706817
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intrinsic fluorescence for cervical precancer detection using polarized light based in-house fabricated portable device.
    Meena BL; Singh P; Sah AN; Pandey K; Agarwal A; Pantola C; Pradhan A
    J Biomed Opt; 2018 Jan; 23(1):1-7. PubMed ID: 29341542
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cervical pre-cancer classification using entropic features and CNN: In vivo validation with a handheld fluorescence probe.
    Deo BS; Sah AN; Shukla S; Pandey K; Singh S; Pal M; Panigrahi PK; Pradhan A
    J Biophotonics; 2024 Mar; 17(3):e202300363. PubMed ID: 38010318
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design, fabrication and testing of 3D printed smartphone-based device for collection of intrinsic fluorescence from human cervix.
    Shukla S; Sah AN; Hatiboruah D; Ahirwar S; Nath P; Pradhan A
    Sci Rep; 2022 Jul; 12(1):11192. PubMed ID: 35778460
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Concentration of FAD as a marker for cervical precancer detection.
    Meena BL; Agarwal A; Pantola C; Pandey K; Pradhan A
    J Biomed Opt; 2019 Mar; 24(3):1-7. PubMed ID: 30903655
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Study protocol for a two-site clinical trial to validate a smartphone-based artificial intelligence classifier identifying cervical precancer and cancer in HPV-positive women in Cameroon.
    Baleydier I; Vassilakos P; Viñals R; Wisniak A; Kenfack B; Tsuala Fouogue J; Enownchong Enow Orock G; Lemoupa Makajio S; Foguem Tincho E; Undurraga M; Cattin M; Makohliso S; Schönenberger K; Gervaix A; Thiran JP; Petignat P
    PLoS One; 2021; 16(12):e0260776. PubMed ID: 34914727
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combining the strengths of radiologists and AI for breast cancer screening: a retrospective analysis.
    Leibig C; Brehmer M; Bunk S; Byng D; Pinker K; Umutlu L
    Lancet Digit Health; 2022 Jul; 4(7):e507-e519. PubMed ID: 35750400
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Diffuse reflectance patterns in cervical spectroscopy.
    Marín NM; Milbourne A; Rhodes H; Ehlen T; Miller D; Benedet L; Richards-Kortum R; Follen M
    Gynecol Oncol; 2005 Dec; 99(3 Suppl 1):S116-20. PubMed ID: 16165197
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Histology verification demonstrates that biospectroscopy analysis of cervical cytology identifies underlying disease more accurately than conventional screening: removing the confounder of discordance.
    Gajjar K; Ahmadzai AA; Valasoulis G; Trevisan J; Founta C; Nasioutziki M; Loufopoulos A; Kyrgiou M; Stasinou SM; Karakitsos P; Paraskevaidis E; Da Gama-Rose B; Martin-Hirsch PL; Martin FL
    PLoS One; 2014; 9(1):e82416. PubMed ID: 24404130
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Smartphone-Based Fluorescent Diagnostic System for Highly Pathogenic H5N1 Viruses.
    Yeo SJ; Choi K; Cuc BT; Hong NN; Bao DT; Ngoc NM; Le MQ; Hang Nle K; Thach NC; Mallik SK; Kim HS; Chong CK; Choi HS; Sung HW; Yu K; Park H
    Theranostics; 2016; 6(2):231-42. PubMed ID: 26877781
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient screening for severe aortic valve stenosis using understandable artificial intelligence: a prospective diagnostic accuracy study.
    Makimoto H; Shiraga T; Kohlmann B; Magnisali CE; Gerguri S; Motoyama N; Clasen L; Bejinariu A; Klein K; Makimoto A; Jung C; Westenfeld R; Zeus T; Kelm M
    Eur Heart J Digit Health; 2022 Jun; 3(2):141-152. PubMed ID: 36713014
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deep learning-based image evaluation for cervical precancer screening with a smartphone targeting low resource settings - Engineering approach.
    Hu L; Horning MP; Banik D; Ajenifuja OK; Adepiti CA; Yeates K; Mtema Z; Wilson B; Mehanian C
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():1944-1949. PubMed ID: 33018383
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cervical pre-cancerous lesion detection: development of smartphone-based VIA application using artificial intelligence.
    Harsono AB; Susiarno H; Suardi D; Owen L; Fauzi H; Kireina J; Wahid RA; Carolina JS; Mantilidewi KI; Hidayat YM
    BMC Res Notes; 2022 Dec; 15(1):356. PubMed ID: 36463193
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simultaneous fingerprint and high-wavenumber confocal Raman spectroscopy enhances early detection of cervical precancer in vivo.
    Duraipandian S; Zheng W; Ng J; Low JJ; Ilancheran A; Huang Z
    Anal Chem; 2012 Jul; 84(14):5913-9. PubMed ID: 22724621
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Point-of-care devices based on fluorescence imaging and spectroscopy for tumor margin detection during breast cancer surgery: Towards breast conservation treatment.
    Thapa P; Singh V; Gupta K; Shrivastava A; Kumar V; Kataria K; Mishra PR; Mehta DS
    Lasers Surg Med; 2023 Apr; 55(4):423-436. PubMed ID: 36884000
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diagnosis of Cervical Cancer and Pre-Cancerous Lesions by Artificial Intelligence: A Systematic Review.
    Allahqoli L; Laganà AS; Mazidimoradi A; Salehiniya H; Günther V; Chiantera V; Karimi Goghari S; Ghiasvand MM; Rahmani A; Momenimovahed Z; Alkatout I
    Diagnostics (Basel); 2022 Nov; 12(11):. PubMed ID: 36428831
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mobile-based oral cancer classification for point-of-care screening.
    Song B; Sunny S; Li S; Gurushanth K; Mendonca P; Mukhia N; Patrick S; Gurudath S; Raghavan S; Imchen T; Leivon S; Kolur T; Shetty V; Bushan V; Ramesh R; Lima N; Pillai V; Wilder-Smith P; Sigamani A; Suresh A; Kuriakose M; Birur P; Liang R
    J Biomed Opt; 2021 Jun; 26(6):. PubMed ID: 34164967
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Smartphone-based diabetic macula edema screening with an offline artificial intelligence.
    Hwang DK; Yu WK; Lin TC; Chou SJ; Yarmishyn A; Kao ZK; Kao CL; Yang YP; Chen SJ; Hsu CC; Jheng YC
    J Chin Med Assoc; 2020 Dec; 83(12):1102-1106. PubMed ID: 33210900
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diagnostic accuracy of smartphone-based artificial intelligence systems for detecting diabetic retinopathy: A systematic review and meta-analysis.
    Hasan SU; Siddiqui MAR
    Diabetes Res Clin Pract; 2023 Nov; 205():110943. PubMed ID: 37805002
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.