These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 38495015)
1. Precise molecular engineering for the preparation of pyridinium photosensitizers with efficient ROS generation and photothermal conversion. Yin W; Li J; Ma Y; Li W; Huo Y; Zhao Z; Ji S Phys Chem Chem Phys; 2024 Mar; 26(13):10156-10167. PubMed ID: 38495015 [TBL] [Abstract][Full Text] [Related]
2. Progress and trends of photodynamic therapy: From traditional photosensitizers to AIE-based photosensitizers. Wang S; Wang X; Yu L; Sun M Photodiagnosis Photodyn Ther; 2021 Jun; 34():102254. PubMed ID: 33713845 [TBL] [Abstract][Full Text] [Related]
3. Design and structural regulation of AIE photosensitizers for imaging-guided photodynamic anti-tumor application. Jia S; Yuan H; Hu R Biomater Sci; 2022 Aug; 10(16):4443-4457. PubMed ID: 35789348 [TBL] [Abstract][Full Text] [Related]
4. Molecular engineering to achieve AIE-active photosensitizers with NIR emission and rapid ROS generation efficiency. Ding G; Tong J; Gong J; Wang Z; Su Z; Liu L; Han X; Wang J; Zhang L; Wang X; Wen LL; Shan GG J Mater Chem B; 2022 Jul; 10(27):5272-5278. PubMed ID: 35766043 [TBL] [Abstract][Full Text] [Related]
5. Phototherapeutic applications of benzophenone-containing NIR-emitting photosensitizers based on different receptor modulations. Chen S; Li J; Yin W; Li W; He X; Liang H; Mahmood Z; Huo Y; Zhao Z; Ji S J Mater Chem B; 2024 Oct; 12(38):9533-9544. PubMed ID: 39314202 [TBL] [Abstract][Full Text] [Related]
6. Molecular engineering to enhance the reactive oxygen species generation of AIEgens and exploration of their versatile applications. Yin W; Li J; Ma Y; Xing L; Chen Z; Liu B; Huo Y; Zhao Z; Ji S J Mater Chem B; 2023 Aug; 11(34):8182-8193. PubMed ID: 37545413 [TBL] [Abstract][Full Text] [Related]
7. Aggregation-induced emission photosensitizer-based photodynamic therapy in cancer: from chemical to clinical. Meng Z; Xue H; Wang T; Chen B; Dong X; Yang L; Dai J; Lou X; Xia F J Nanobiotechnology; 2022 Jul; 20(1):344. PubMed ID: 35883086 [TBL] [Abstract][Full Text] [Related]
8. Recent molecular design strategies for efficient photodynamic therapy and its synergistic therapy based on AIE photosensitizers. Liu J; Chen W; Zheng C; Hu F; Zhai J; Bai Q; Sun N; Qian G; Zhang Y; Dong K; Lu T Eur J Med Chem; 2022 Dec; 244():114843. PubMed ID: 36265281 [TBL] [Abstract][Full Text] [Related]
9. Cationization to boost both type I and type II ROS generation for photodynamic therapy. Yu Y; Wu S; Zhang L; Xu S; Dai C; Gan S; Xie G; Feng G; Tang BZ Biomaterials; 2022 Jan; 280():121255. PubMed ID: 34810034 [TBL] [Abstract][Full Text] [Related]
10. Tuning intramolecular charge transfer and spin-orbit coupling of AIE-active type-I photosensitizers for photodynamic therapy. Singh R; Chen DG; Wang CH; Wu CC; Hsu CH; Wu CH; Lai TY; Chou PT; Chen CT J Mater Chem B; 2022 Aug; 10(32):6228-6236. PubMed ID: 35920213 [TBL] [Abstract][Full Text] [Related]
11. Tuning Organelle Specificity and Photodynamic Therapy Efficiency by Molecular Function Design. Liu Z; Zou H; Zhao Z; Zhang P; Shan GG; Kwok RTK; Lam JWY; Zheng L; Tang BZ ACS Nano; 2019 Oct; 13(10):11283-11293. PubMed ID: 31525947 [TBL] [Abstract][Full Text] [Related]
12. Donor-Acceptor Modulating of Ionic AIE Photosensitizers for Enhanced ROS Generation and NIR-II Emission. Yang X; Wang X; Zhang X; Zhang J; Lam JWY; Sun H; Yang J; Liang Y; Tang BZ Adv Mater; 2024 Jul; 36(28):e2402182. PubMed ID: 38663035 [TBL] [Abstract][Full Text] [Related]
13. Acceptor Planarization and Donor Rotation: A Facile Strategy for Realizing Synergistic Cancer Phototherapy Feng L; Li C; Liu L; Wang Z; Chen Z; Yu J; Ji W; Jiang G; Zhang P; Wang J; Tang BZ ACS Nano; 2022 Mar; 16(3):4162-4174. PubMed ID: 35230081 [TBL] [Abstract][Full Text] [Related]
14. Near-infrared photodynamic and photothermal co-therapy based on organic small molecular dyes. Guo S; Gu D; Yang Y; Tian J; Chen X J Nanobiotechnology; 2023 Sep; 21(1):348. PubMed ID: 37759287 [TBL] [Abstract][Full Text] [Related]
15. Molecular engineering to red-shift the absorption band of AIE photosensitizers and improve their ROS generation ability. Zhang Y; Pan X; Shi H; Wang Y; Liu W; Cai L; Wang L; Wang H; Chen Z J Mater Chem B; 2023 Apr; 11(14):3252-3261. PubMed ID: 36971133 [TBL] [Abstract][Full Text] [Related]
16. Cell Membrane-Inspired Polymeric Vesicles for Combined Photothermal and Photodynamic Prostate Cancer Therapy. Hu J; Luo H; Qu Q; Liao X; Huang C; Chen J; Cai Z; Bao Y; Chen G; Li B; Cui W ACS Appl Mater Interfaces; 2020 Sep; 12(38):42511-42520. PubMed ID: 32897691 [TBL] [Abstract][Full Text] [Related]
17. Donor-Acceptor Engineering for Tailoring Highly Efficient Photosensitizers for Image-Guided Antitumor Photodynamic Therapy. Kamya E; Yi S; Hussain Z; Lu Z; Li W; Yan J; Ma F; Ullah I; Cao Y; Pei R ACS Macro Lett; 2023 Nov; 12(11):1549-1557. PubMed ID: 37921535 [TBL] [Abstract][Full Text] [Related]
18. AIE material for photodynamic therapy. Saini V; Venkatesh V Prog Mol Biol Transl Sci; 2021; 185():45-73. PubMed ID: 34782107 [TBL] [Abstract][Full Text] [Related]
19. AIE-Active Photosensitizers: Manipulation of Reactive Oxygen Species Generation and Applications in Photodynamic Therapy. Yu H; Chen B; Huang H; He Z; Sun J; Wang G; Gu X; Tang BZ Biosensors (Basel); 2022 May; 12(5):. PubMed ID: 35624649 [TBL] [Abstract][Full Text] [Related]
20. Red/NIR emissive aggregation-induced emission-active photosensitizers with strong donor-acceptor strength for image-guided photodynamic therapy of cancer. Ma Y; Yin W; Ji S; Wang J; Lam JWY; Kwok RTK; Huo Y; Sun J; Tang BZ Luminescence; 2023 Dec; 38(12):2086-2094. PubMed ID: 37740529 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]