These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
173 related articles for article (PubMed ID: 38495156)
1. Exploring faradaic and non-faradaic electrochemical impedance spectroscopy approaches in Parkinson's disease diagnosis. Adam H; Gopinath SCB; Adam T; A Fakhri M; T Salim E; Subramaniam S Heliyon; 2024 Mar; 10(5):e27433. PubMed ID: 38495156 [TBL] [Abstract][Full Text] [Related]
2. Selective detection of alpha synuclein amyloid fibrils by faradaic and non-faradaic electrochemical impedance spectroscopic approaches. Adam H; Gopinath SCB; Krishnan H; Adam T; Fakhri MA; Salim ET; Shamsher A; Subramaniam S; Chen Y Bioelectrochemistry; 2025 Feb; 161():108800. PubMed ID: 39241513 [TBL] [Abstract][Full Text] [Related]
3. Immunosensing prostate-specific antigen: Faradaic vs non-Faradaic electrochemical impedance spectroscopy analysis on interdigitated microelectrode device. Ibau C; Arshad MKM; Gopinath SCB; Nuzaihan M N M; Fathil MFM; Shamsuddin SA Int J Biol Macromol; 2020 Nov; 162():1924-1936. PubMed ID: 32822729 [TBL] [Abstract][Full Text] [Related]
4. Amyloid Beta Detection by Faradaic Electrochemical Impedance Spectroscopy Using Interdigitated Microelectrodes. Park JS; Kim HJ; Lee JH; Park JH; Kim J; Hwang KS; Lee BC Sensors (Basel); 2018 Feb; 18(2):. PubMed ID: 29389878 [TBL] [Abstract][Full Text] [Related]
5. Faradaic electrochemical impedance spectroscopy for enhanced analyte detection in diagnostics. Strong ME; Richards JR; Torres M; Beck CM; La Belle JT Biosens Bioelectron; 2021 Apr; 177():112949. PubMed ID: 33429205 [TBL] [Abstract][Full Text] [Related]
6. Enhancing the performance of paper-based electrochemical impedance spectroscopy nanobiosensors: An experimental approach. Li X; Qin Z; Fu H; Li T; Peng R; Li Z; Rini JM; Liu X Biosens Bioelectron; 2021 Apr; 177():112672. PubMed ID: 33461849 [TBL] [Abstract][Full Text] [Related]
7. Emerging Applications of Electrochemical Impedance Spectroscopy in Tear Film Analysis. Ozdalgic B; Gul M; Uygun ZO; Atçeken N; Tasoglu S Biosensors (Basel); 2022 Oct; 12(10):. PubMed ID: 36290964 [TBL] [Abstract][Full Text] [Related]
8. Non-Faradaic electrochemical impedance spectroscopy as a reliable and facile method: Determination of the potassium ion concentration using a guanine rich aptasensor. Kazemi SH; Shanehsaz M; Ghaemmaghami M Mater Sci Eng C Mater Biol Appl; 2015; 52():151-4. PubMed ID: 25953552 [TBL] [Abstract][Full Text] [Related]
9. Development of a POCT type insulin sensor employing anti-insulin single chain variable fragment based on faradaic electrochemical impedance spectroscopy under single frequency measurement. Khanwalker M; Fujita R; Lee J; Wilson E; Ito K; Asano R; Ikebukuro K; LaBelle J; Sode K Biosens Bioelectron; 2022 Mar; 200():113901. PubMed ID: 34968857 [TBL] [Abstract][Full Text] [Related]
10. Electrochemical Impedance Spectroscopy (EIS): Principles, Construction, and Biosensing Applications. Magar HS; Hassan RYA; Mulchandani A Sensors (Basel); 2021 Oct; 21(19):. PubMed ID: 34640898 [TBL] [Abstract][Full Text] [Related]
11. Third generation impedimetric sensor employing direct electron transfer type glucose dehydrogenase. Ito Y; Okuda-Shimazaki J; Tsugawa W; Loew N; Shitanda I; Lin CE; La Belle J; Sode K Biosens Bioelectron; 2019 Mar; 129():189-197. PubMed ID: 30721794 [TBL] [Abstract][Full Text] [Related]
12. Electrical probing of endothelial cell behaviour on a fibronectin/polystyrene/thiol/gold electrode by Faradaic electrochemical impedance spectroscopy (EIS). Bouafsoun A; Helali S; Mebarek S; Zeiller C; Prigent AF; Othmane A; Kerkeni A; Jaffrézic-Renault N; Ponsonnet L Bioelectrochemistry; 2007 May; 70(2):401-7. PubMed ID: 16844428 [TBL] [Abstract][Full Text] [Related]
13. Critical View on Electrochemical Impedance Spectroscopy Using the Ferri/Ferrocyanide Redox Couple at Gold Electrodes. Vogt S; Su Q; Gutiérrez-Sánchez C; Nöll G Anal Chem; 2016 Apr; 88(8):4383-90. PubMed ID: 26990929 [TBL] [Abstract][Full Text] [Related]
14. Integration of Faradaic electrochemical impedance spectroscopy into a scalable surface plasmon biosensor for in tandem detection. Hong B; Sun A; Pang L; Venkatesh AG; Hall D; Fainman Y Opt Express; 2015 Nov; 23(23):30237-49. PubMed ID: 26698504 [TBL] [Abstract][Full Text] [Related]
15. Enrichment-Free Rapid Detection of Phthalates in Chinese Liquor with Electrochemical Impedance Spectroscopy. Jiang X; Xie Y; Wan D; Zheng F; Wang J Sensors (Basel); 2020 Feb; 20(3):. PubMed ID: 32046225 [TBL] [Abstract][Full Text] [Related]
17. Surface chemistry applications and development of immunosensors using electrochemical impedance spectroscopy: A comprehensive review. Robinson C; Juska VB; O'Riordan A Environ Res; 2023 Nov; 237(Pt 1):116877. PubMed ID: 37579966 [TBL] [Abstract][Full Text] [Related]
18. Can Electrochemical Impedance Spectroscopy be Replaced by Direct Current Techniques in Battery Diagnosis? Guo J; Xu Y; Li P; Pedersen K; Gaberšček M; Stroe DI Chemphyschem; 2024 Nov; 25(21):e202400528. PubMed ID: 38945822 [TBL] [Abstract][Full Text] [Related]
19. Enhancing Square Wave Voltammetry Measurements via Electrochemical Analysis of the Non-Faradaic Potential Window. Cobb SJ; Macpherson JV Anal Chem; 2019 Jun; 91(12):7935-7942. PubMed ID: 31083924 [TBL] [Abstract][Full Text] [Related]
20. Exploring the interfaces between metal electrodes and aqueous electrolytes with electrochemical impedance spectroscopy. Bandarenka AS Analyst; 2013 Oct; 138(19):5540-54. PubMed ID: 23888300 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]