These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 38495447)

  • 21. Above the Epitranscriptome: RNA Modifications and Stem Cell Identity.
    Morena F; Argentati C; Bazzucchi M; Emiliani C; Martino S
    Genes (Basel); 2018 Jun; 9(7):. PubMed ID: 29958477
    [TBL] [Abstract][Full Text] [Related]  

  • 22. DirectRMDB: a database of post-transcriptional RNA modifications unveiled from direct RNA sequencing technology.
    Zhang Y; Jiang J; Ma J; Wei Z; Wang Y; Song B; Meng J; Jia G; de Magalhães JP; Rigden DJ; Hang D; Chen K
    Nucleic Acids Res; 2023 Jan; 51(D1):D106-D116. PubMed ID: 36382409
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Exploring the epitranscriptome by native RNA sequencing.
    Begik O; Mattick JS; Novoa EM
    RNA; 2022 Nov; 28(11):1430-1439. PubMed ID: 36104106
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Quantitative mapping of the mammalian epitranscriptome.
    He B; Chen Y; Yi C
    Curr Opin Genet Dev; 2024 Aug; 87():102212. PubMed ID: 38823337
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Exploring epitranscriptomics for crop improvement and environmental stress tolerance.
    Yang X; Patil S; Joshi S; Jamla M; Kumar V
    Plant Physiol Biochem; 2022 Jul; 183():56-71. PubMed ID: 35567875
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The Regulation of RNA Modification Systems: The Next Frontier in Epitranscriptomics?
    Schaefer MR
    Genes (Basel); 2021 Feb; 12(3):. PubMed ID: 33652758
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Multi-task adaptive pooling enabled synergetic learning of RNA modification across tissue, type and species from low-resolution epitranscriptomes.
    Song Y; Wang Y; Wang X; Huang D; Nguyen A; Meng J
    Brief Bioinform; 2023 May; 24(3):. PubMed ID: 36932656
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Detecting the epitranscriptome.
    Sarkar A; Gasperi W; Begley U; Nevins S; Huber SM; Dedon PC; Begley TJ
    Wiley Interdiscip Rev RNA; 2021 Nov; 12(6):e1663. PubMed ID: 33987958
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The dynamic RNA modification 5-methylcytosine and its emerging role as an epitranscriptomic mark.
    Trixl L; Lusser A
    Wiley Interdiscip Rev RNA; 2019 Jan; 10(1):e1510. PubMed ID: 30311405
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Understanding RNA modifications: the promises and technological bottlenecks of the 'epitranscriptome'.
    Schaefer M; Kapoor U; Jantsch MF
    Open Biol; 2017 May; 7(5):. PubMed ID: 28566301
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Weakly supervised learning of RNA modifications from low-resolution epitranscriptome data.
    Huang D; Song B; Wei J; Su J; Coenen F; Meng J
    Bioinformatics; 2021 Jul; 37(Suppl_1):i222-i230. PubMed ID: 34252943
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Systematic calibration of epitranscriptomic maps using a synthetic modification-free RNA library.
    Zhang Z; Chen T; Chen HX; Xie YY; Chen LQ; Zhao YL; Liu BD; Jin L; Zhang W; Liu C; Ma DZ; Chai GS; Zhang Y; Zhao WS; Ng WH; Chen J; Jia G; Yang J; Luo GZ
    Nat Methods; 2021 Oct; 18(10):1213-1222. PubMed ID: 34594034
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Towards a druggable epitranscriptome: Compounds that target RNA modifications in cancer.
    Berdasco M; Esteller M
    Br J Pharmacol; 2022 Jun; 179(12):2868-2889. PubMed ID: 34185879
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The plant epitranscriptome: revisiting pseudouridine and 2'-O-methyl RNA modifications.
    Ramakrishnan M; Rajan KS; Mullasseri S; Palakkal S; Kalpana K; Sharma A; Zhou M; Vinod KK; Ramasamy S; Wei Q
    Plant Biotechnol J; 2022 Jul; 20(7):1241-1256. PubMed ID: 35445501
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Epitranscriptome: Review of Top 25 Most-Studied RNA Modifications.
    Arzumanian VA; Dolgalev GV; Kurbatov IY; Kiseleva OI; Poverennaya EV
    Int J Mol Sci; 2022 Nov; 23(22):. PubMed ID: 36430347
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A mark of disease: how mRNA modifications shape genetic and acquired pathologies.
    Destefanis E; Avşar G; Groza P; Romitelli A; Torrini S; Pir P; Conticello SG; Aguilo F; Dassi E
    RNA; 2021 Apr; 27(4):367-389. PubMed ID: 33376192
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Targeted m
    Rauch S; Dickinson BC
    Methods Enzymol; 2019; 621():1-16. PubMed ID: 31128773
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The emerging role of epitranscriptome in shaping stress responses in plants.
    Dhingra Y; Gupta S; Gupta V; Agarwal M; Katiyar-Agarwal S
    Plant Cell Rep; 2023 Oct; 42(10):1531-1555. PubMed ID: 37481775
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Emerging Roles of RNA Methylation in Development.
    Wang MK; Gao CC; Yang YG
    Acc Chem Res; 2023 Dec; 56(23):3417-3427. PubMed ID: 37965760
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mapping of RNA Modifications by Direct Nanopore Sequencing and JACUSA2.
    Lemsara A; Dieterich C; Naarmann-de Vries IS
    Methods Mol Biol; 2023; 2624():241-260. PubMed ID: 36723820
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.