These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
42. Detection techniques for epitranscriptomic marks. Ofusa K; Chijimatsu R; Ishii H Am J Physiol Cell Physiol; 2022 Apr; 322(4):C787-C793. PubMed ID: 35294846 [TBL] [Abstract][Full Text] [Related]
43. An Informatics Pipeline for Profiling and Annotating RNA Modifications. Liu Q; Lang X; Gregory RI Methods Mol Biol; 2021; 2298():15-27. PubMed ID: 34085236 [TBL] [Abstract][Full Text] [Related]
44. RMBase v2.0: deciphering the map of RNA modifications from epitranscriptome sequencing data. Xuan JJ; Sun WJ; Lin PH; Zhou KR; Liu S; Zheng LL; Qu LH; Yang JH Nucleic Acids Res; 2018 Jan; 46(D1):D327-D334. PubMed ID: 29040692 [TBL] [Abstract][Full Text] [Related]
46. Decoding the Atlas of RNA Modifications from Epitranscriptome Sequencing Data. Zhang XQ; Yang JH Methods Mol Biol; 2019; 1870():107-124. PubMed ID: 30539550 [TBL] [Abstract][Full Text] [Related]
47. Methods for RNA Modification Mapping Using Deep Sequencing: Established and New Emerging Technologies. Motorin Y; Helm M Genes (Basel); 2019 Jan; 10(1):. PubMed ID: 30634534 [TBL] [Abstract][Full Text] [Related]
48. Epitranscriptomic profile of Lactobacillus agilis and its adaptation to growth on inulin. Wang H; Simpson JH; Kotra ME; Zhu Y; Wickramasinghe S; Mills DA; Chiu NHL BMC Res Notes; 2021 Apr; 14(1):154. PubMed ID: 33883017 [TBL] [Abstract][Full Text] [Related]
49. RNA Modifications and RNA Metabolism in Neurological Disease Pathogenesis. Chatterjee B; Shen CJ; Majumder P Int J Mol Sci; 2021 Nov; 22(21):. PubMed ID: 34769301 [TBL] [Abstract][Full Text] [Related]
50. Deciphering the epitranscriptome: A green perspective. Burgess A; David R; Searle IR J Integr Plant Biol; 2016 Oct; 58(10):822-835. PubMed ID: 27172004 [TBL] [Abstract][Full Text] [Related]
51. Recent advances in the plant epitranscriptome. Shen L; Ma J; Li P; Wu Y; Yu H Genome Biol; 2023 Mar; 24(1):43. PubMed ID: 36882788 [TBL] [Abstract][Full Text] [Related]
52. The impact of epitranscriptomic marks on post-transcriptional regulation in plants. Yu X; Sharma B; Gregory BD Brief Funct Genomics; 2021 Mar; 20(2):113-124. PubMed ID: 33274735 [TBL] [Abstract][Full Text] [Related]
53. Deciphering RNA modifications at base resolution: from chemistry to biology. Debnath TK; Xhemalçe B Brief Funct Genomics; 2021 Mar; 20(2):77-85. PubMed ID: 33454749 [TBL] [Abstract][Full Text] [Related]
54. Epitranscriptomic dynamics in brain development and disease. Shafik AM; Allen EG; Jin P Mol Psychiatry; 2022 Sep; 27(9):3633-3646. PubMed ID: 35474104 [TBL] [Abstract][Full Text] [Related]
55. Characterizing RNA modifications in the central nervous system and single cells by RNA sequencing and liquid chromatography-tandem mass spectrometry techniques. Patel A; Clark KD Anal Bioanal Chem; 2023 Jul; 415(18):3739-3748. PubMed ID: 36840809 [TBL] [Abstract][Full Text] [Related]
56. Analyzing viral epitranscriptomes using nanopore direct RNA sequencing. Hong A; Kim D; Kim VN; Chang H J Microbiol; 2022 Sep; 60(9):867-876. PubMed ID: 36001233 [TBL] [Abstract][Full Text] [Related]
57. Emerging roles of the epitranscriptome in parasitic protozoan biology and pathogenesis. Guo G; Lin Y; Zhu X; Ding F; Xue X; Zhang Q Trends Parasitol; 2024 Mar; 40(3):214-229. PubMed ID: 38355313 [TBL] [Abstract][Full Text] [Related]