These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 38495561)

  • 1. Creating and troubleshooting microscopy analysis workflows: common challenges and common solutions.
    Cimini BA
    ArXiv; 2024 Mar; ():. PubMed ID: 38495561
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Creating and troubleshooting microscopy analysis workflows: Common challenges and common solutions.
    Cimini BA
    J Microsc; 2024 Aug; 295(2):93-101. PubMed ID: 38532662
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bi-channel image registration and deep-learning segmentation (BIRDS) for efficient, versatile 3D mapping of mouse brain.
    Wang X; Zeng W; Yang X; Zhang Y; Fang C; Zeng S; Han Y; Fei P
    Elife; 2021 Jan; 10():. PubMed ID: 33459255
    [TBL] [Abstract][Full Text] [Related]  

  • 4. BIAFLOWS: A Collaborative Framework to Reproducibly Deploy and Benchmark Bioimage Analysis Workflows.
    Rubens U; Mormont R; Paavolainen L; Bäcker V; Pavie B; Scholz LA; Michiels G; Maška M; Ünay D; Ball G; Hoyoux R; Vandaele R; Golani O; Stanciu SG; Sladoje N; Paul-Gilloteaux P; Marée R; Tosi S
    Patterns (N Y); 2020 Jun; 1(3):100040. PubMed ID: 33205108
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Disease quantification on PET/CT images without explicit object delineation.
    Tong Y; Udupa JK; Odhner D; Wu C; Schuster SJ; Torigian DA
    Med Image Anal; 2019 Jan; 51():169-183. PubMed ID: 30453165
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A survey on applications of deep learning in microscopy image analysis.
    Liu Z; Jin L; Chen J; Fang Q; Ablameyko S; Yin Z; Xu Y
    Comput Biol Med; 2021 Jul; 134():104523. PubMed ID: 34091383
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Open-source deep-learning software for bioimage segmentation.
    Lucas AM; Ryder PV; Li B; Cimini BA; Eliceiri KW; Carpenter AE
    Mol Biol Cell; 2021 Apr; 32(9):823-829. PubMed ID: 33872058
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A midas plugin to enable construction of reproducible web-based image processing pipelines.
    Grauer M; Reynolds P; Hoogstoel M; Budin F; Styner MA; Oguz I
    Front Neuroinform; 2013; 7():46. PubMed ID: 24416016
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multi-template matching: a versatile tool for object-localization in microscopy images.
    Thomas LSV; Gehrig J
    BMC Bioinformatics; 2020 Feb; 21(1):44. PubMed ID: 32024462
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep learning in mesoscale brain image analysis: A review.
    Chen R; Liu M; Chen W; Wang Y; Meijering E
    Comput Biol Med; 2023 Dec; 167():107617. PubMed ID: 37918261
    [TBL] [Abstract][Full Text] [Related]  

  • 11. OpSeF: Open Source Python Framework for Collaborative Instance Segmentation of Bioimages.
    Rasse TM; Hollandi R; Horvath P
    Front Bioeng Biotechnol; 2020; 8():558880. PubMed ID: 33117778
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Generalising from conventional pipelines using deep learning in high-throughput screening workflows.
    Garcia Santa Cruz B; Slter J; Gomez-Giro G; Saraiva C; Sabate-Soler S; Modamio J; Barmpa K; Schwamborn JC; Hertel F; Jarazo J; Husch A
    Sci Rep; 2022 Jul; 12(1):11465. PubMed ID: 35794231
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Grayscale medical image segmentation method based on 2D&3D object detection with deep learning.
    Ge Y; Zhang Q; Sun Y; Shen Y; Wang X
    BMC Med Imaging; 2022 Feb; 22(1):33. PubMed ID: 35220942
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integration of the ImageJ Ecosystem in the KNIME Analytics Platform.
    Dietz C; Rueden CT; Helfrich S; Dobson ETA; Horn M; Eglinger J; Evans EL; McLean DT; Novitskaya T; Ricke WA; Sherer NM; Zijlstra A; Berthold MR; Eliceiri KW
    Front Comput Sci; 2020 Mar; 2():. PubMed ID: 32905440
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The future of Cochrane Neonatal.
    Soll RF; Ovelman C; McGuire W
    Early Hum Dev; 2020 Nov; 150():105191. PubMed ID: 33036834
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ModularImageAnalysis (MIA): Assembly of modularised image and object analysis workflows in ImageJ.
    Cross SJ; Fisher JDJR; Jepson MA
    J Microsc; 2023 Sep; ():. PubMed ID: 37696268
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Calibrating ensembles for scalable uncertainty quantification in deep learning-based medical image segmentation.
    Buddenkotte T; Escudero Sanchez L; Crispin-Ortuzar M; Woitek R; McCague C; Brenton JD; Öktem O; Sala E; Rundo L
    Comput Biol Med; 2023 Sep; 163():107096. PubMed ID: 37302375
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ontology-guided segmentation and object identification for developmental mouse lung immunofluorescent images.
    Masci AM; White S; Neely B; Ardini-Polaske M; Hill CB; Misra RS; Aronow B; Gaddis N; Yang L; Wert SE; Palmer SM; Chan C;
    BMC Bioinformatics; 2021 Feb; 22(1):82. PubMed ID: 33622235
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The impact of pre- and post-image processing techniques on deep learning frameworks: A comprehensive review for digital pathology image analysis.
    Salvi M; Acharya UR; Molinari F; Meiburger KM
    Comput Biol Med; 2021 Jan; 128():104129. PubMed ID: 33254082
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An Interactive Image Segmentation Method Based on Multi-Level Semantic Fusion.
    Zou R; Wang Q; Wen F; Chen Y; Liu J; Du S; Yuan C
    Sensors (Basel); 2023 Jul; 23(14):. PubMed ID: 37514688
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.