These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 38495693)

  • 1. Rolling shutter speckle plethysmography for quantitative cardiovascular monitoring.
    Lee Y; Byun S; Yi C; Jung J; Lee SA
    Biomed Opt Express; 2024 Mar; 15(3):1540-1552. PubMed ID: 38495693
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improvements and validation of spatiotemporal speckle correlation model for rolling shutter speckle imaging.
    Yi C; Byun S; Lee Y; Lee SA
    Biomed Opt Express; 2024 Feb; 15(2):1253-1267. PubMed ID: 38404314
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rolling Shutter Inversion: Bring Rolling Shutter Images to High Framerate Global Shutter Video.
    Fan B; Dai Y; Li H
    IEEE Trans Pattern Anal Mach Intell; 2023 May; 45(5):6214-6230. PubMed ID: 36269907
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Extreme detectable vibration frequency limited by rolling shutter camera imaging of laser speckles.
    Hong H; Liang J; Deng L; Guo W; Wang X
    Opt Lett; 2023 Aug; 48(15):3837-3840. PubMed ID: 37527062
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vibration Detection and Degraded Image Restoration of Space Camera Based on Correlation Imaging of Rolling-Shutter CMOS.
    Liu H; Lv H; Han C; Zhao Y
    Sensors (Basel); 2023 Jun; 23(13):. PubMed ID: 37447801
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Forward multiple scattering dominates speckle decorrelation in whole-blood flowmetry using optical coherence tomography.
    Ferris NG; Cannon TM; Villiger M; Bouma BE; Uribe-Patarroyo N
    Biomed Opt Express; 2020 Apr; 11(4):1947-1966. PubMed ID: 32341859
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantification of ultrasound correlation-based flow velocity mapping and edge velocity gradient measurement.
    Park DW; Kruger GH; Rubin JM; Hamilton J; Gottschalk P; Dodde RE; Shih AJ; Weitzel WF
    J Ultrasound Med; 2013 Oct; 32(10):1815-30. PubMed ID: 24065263
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cerebral capillary velocimetry based on temporal OCT speckle contrast.
    Choi WJ; Li Y; Qin W; Wang RK
    Biomed Opt Express; 2016 Dec; 7(12):4859-4873. PubMed ID: 28018711
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of red blood cell aggregates dissociation on the estimation of ultrasound speckle image velocimetry.
    Yeom E; Nam KH; Paeng DG; Lee SJ
    Ultrasonics; 2014 Aug; 54(6):1480-7. PubMed ID: 24794508
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wearable speckle plethysmography (SPG) for characterizing microvascular flow and resistance.
    Ghijsen M; Rice TB; Yang B; White SM; Tromberg BJ
    Biomed Opt Express; 2018 Aug; 9(8):3937-3952. PubMed ID: 30338166
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simultaneous Video Stabilization and Rolling Shutter Removal.
    Wu H; Xiao L; Wei Z
    IEEE Trans Image Process; 2021; 30():4637-4652. PubMed ID: 33886471
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative technique for robust and noise-tolerant speed measurements based on speckle decorrelation in optical coherence tomography.
    Uribe-Patarroyo N; Villiger M; Bouma BE
    Opt Express; 2014 Oct; 22(20):24411-29. PubMed ID: 25322018
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct characterization of tissue dynamics with laser speckle contrast imaging.
    Zheng S; Mertz J
    Biomed Opt Express; 2022 Aug; 13(8):4118-4133. PubMed ID: 36032565
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improvement of ultrasound speckle image velocimetry using image enhancement techniques.
    Yeom E; Nam KH; Paeng DG; Lee SJ
    Ultrasonics; 2014 Jan; 54(1):205-16. PubMed ID: 23725769
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dual-Shutter Optical Vibration Sensing.
    Sheinin M; Chan D; O'Toole M; Narasimhan SG
    IEEE Trans Pattern Anal Mach Intell; 2023 Dec; PP():. PubMed ID: 38117625
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Advances in laser speckle imaging: From qualitative to quantitative hemodynamic assessment.
    Qureshi MM; Allam N; Im J; Kwon HS; Chung E; Vitkin IA
    J Biophotonics; 2024 Jan; 17(1):e202300126. PubMed ID: 37545037
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrasound Speckle Decorrelation-Based Blood Flow Measurements.
    Park DC; Park DW
    Ultrasound Med Biol; 2023 Jul; 49(7):1491-1498. PubMed ID: 37012098
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Speckle rotation decorrelation based single-shot video through scattering media.
    Shi Y; Liu Y; Sheng W; Wang J; Wu T
    Opt Express; 2019 May; 27(10):14567-14576. PubMed ID: 31163902
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fiber-based laser speckle imaging for the detection of pulsatile flow.
    Regan C; Yang BY; Mayzel KC; Ramirez-San-Juan JC; Wilder-Smith P; Choi B
    Lasers Surg Med; 2015 Aug; 47(6):520-5. PubMed ID: 26202900
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fluctuations of temporal contrast in laser speckle imaging of blood flow.
    Hong J; Wang Y; Chen X; Lu J; Li P
    Opt Lett; 2018 Nov; 43(21):5214-5217. PubMed ID: 30382969
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.