These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 38495693)

  • 21. Object Distance Estimation Using a Single Image Taken from a Moving Rolling Shutter Camera.
    Kim N; Bae J; Kim C; Park S; Sohn HG
    Sensors (Basel); 2020 Jul; 20(14):. PubMed ID: 32664391
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Shuffled rolling shutter for snapshot temporal imaging.
    Vera E; Guzmán F; Díaz N
    Opt Express; 2022 Jan; 30(2):887-901. PubMed ID: 35209268
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dynamic laser speckle imaging of cerebral blood flow.
    Zakharov P; Völker AC; Wyss MT; Haiss F; Calcinaghi N; Zunzunegui C; Buck A; Scheffold F; Weber B
    Opt Express; 2009 Aug; 17(16):13904-17. PubMed ID: 19654798
    [TBL] [Abstract][Full Text] [Related]  

  • 24. On velocity estimation using speckle decorrelation.
    Li PC; Cheng CJ; Yeh CK
    IEEE Trans Ultrason Ferroelectr Freq Control; 2001 Jul; 48(4):1084-91. PubMed ID: 11477767
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Photoacoustic flow velocity imaging based on complex field decorrelation.
    Pakdaman Zangabad R; Iskander-Rizk S; van der Meulen P; Meijlink B; Kooiman K; Wang T; van der Steen AFW; van Soest G
    Photoacoustics; 2021 Jun; 22():100256. PubMed ID: 33868919
    [TBL] [Abstract][Full Text] [Related]  

  • 26. High-throughput imaging through dynamic scattering media based on speckle de-blurring.
    Zhang W; Zhu S; Liu L; Bai L; Han J; Guo E
    Opt Express; 2023 Oct; 31(22):36503-36520. PubMed ID: 38017801
    [TBL] [Abstract][Full Text] [Related]  

  • 27. 3-D Velocity and Volume Flow Measurement In Vivo Using Speckle Decorrelation and 2-D High-Frame-Rate Contrast-Enhanced Ultrasound.
    Zhou X; Leow CH; Rowland E; Riemer K; Rubin JM; Weinberg PD; Tang MX
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Dec; 65(12):2233-2244. PubMed ID: 29994672
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Robust quantitative single-exposure laser speckle imaging with true flow speckle contrast in the temporal and spatial domains.
    Wang C; Cao Z; Jin X; Lin W; Zheng Y; Zeng B; Xu M
    Biomed Opt Express; 2019 Aug; 10(8):4097-4114. PubMed ID: 31452997
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Vector tomographic X-ray phase contrast velocimetry utilizing dynamic blood speckle.
    Irvine SC; Paganin DM; Jamison A; Dubsky S; Fouras A
    Opt Express; 2010 Feb; 18(3):2368-79. PubMed ID: 20174067
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Quantitative blood flow velocity imaging using laser speckle flowmetry.
    Nadort A; Kalkman K; van Leeuwen TG; Faber DJ
    Sci Rep; 2016 Apr; 6():25258. PubMed ID: 27126250
    [TBL] [Abstract][Full Text] [Related]  

  • 31. High-dynamic-range blood flow rate measurement in a large-diameter vessel.
    Yuan Y; Bi Y; Gao XC; Sun MY; Gao WN
    Appl Opt; 2021 Aug; 60(23):6837-6842. PubMed ID: 34613163
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Camera-Derived Photoplethysmography (rPPG) and Speckle Plethysmography (rSPG): Comparing Reflective and Transmissive Mode at Various Integration Times Using LEDs and Lasers.
    Herranz Olazábal J; Wieringa F; Hermeling E; Van Hoof C
    Sensors (Basel); 2022 Aug; 22(16):. PubMed ID: 36015822
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Two-dimensional blood flow velocity estimation using ultrasound speckle pattern dependence on scan direction and A-line acquisition velocity.
    Xu T; Bashford G
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 May; 60(5):898-908. PubMed ID: 23661124
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Optical camera communication (OCC) using a laser-diode coupled optical-diffusing fiber (ODF) and rolling shutter image sensor.
    Tsai DC; Chang YH; Chow CW; Liu Y; Yeh CH; Peng CW; Hsu LS
    Opt Express; 2022 May; 30(10):16069-16077. PubMed ID: 36221459
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Deep end-to-end rolling shutter rectification.
    Kandula P; Kumar TL; Rajagopalan AN
    J Opt Soc Am A Opt Image Sci Vis; 2020 Oct; 37(10):1574-1582. PubMed ID: 33104603
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fast pulsatile blood flow measurement in deep tissue through a multimode detection fiber.
    Bi R; Du Y; Singh G; Ho CJ; Zhang S; Attia ABE; Li X; Olivo M
    J Biomed Opt; 2020 May; 25(5):1-10. PubMed ID: 32406214
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Decorrelation-induced phase errors in phase-shifting speckle interferometry.
    Lehmann M
    Appl Opt; 1997 Jun; 36(16):3657-67. PubMed ID: 18253388
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of speckle/pixel size ratio on temporal and spatial speckle-contrast analysis of dynamic scattering systems: Implications for measurements of blood-flow dynamics.
    Ramirez-San-Juan JC; Mendez-Aguilar E; Salazar-Hermenegildo N; Fuentes-Garcia A; Ramos-Garcia R; Choi B
    Biomed Opt Express; 2013; 4(10):1883-9. PubMed ID: 24156051
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Laser speckle contrast imaging: theoretical and practical limitations.
    Briers D; Duncan DD; Hirst E; Kirkpatrick SJ; Larsson M; Steenbergen W; Stromberg T; Thompson OB
    J Biomed Opt; 2013 Jun; 18(6):066018. PubMed ID: 23807512
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.