These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
174 related articles for article (PubMed ID: 38496245)
21. A coevolution-guided model for the rotor of the bacterial flagellar motor. Khan S; Guo TW; Misra S Sci Rep; 2018 Aug; 8(1):11754. PubMed ID: 30082903 [TBL] [Abstract][Full Text] [Related]
22. FliN is a major structural protein of the C-ring in the Salmonella typhimurium flagellar basal body. Zhao R; Pathak N; Jaffe H; Reese TS; Khan S J Mol Biol; 1996 Aug; 261(2):195-208. PubMed ID: 8757287 [TBL] [Abstract][Full Text] [Related]
23. Construction of functional fragments of the cytoplasmic loop with the C-terminal region of PomA, a stator component of the Vibrio Na+ driven flagellar motor. Onoue Y; Abe-Yoshizumi R; Gohara M; Kobayashi S; Nishioka N; Kojima S; Homma M J Biochem; 2014 Mar; 155(3):207-16. PubMed ID: 24398784 [TBL] [Abstract][Full Text] [Related]
24. Interaction of FlhF, SRP-like GTPase with FliF, MS ring component assembling the initial structure of flagella in marine Vibrio. Fukushima Y; Homma M; Kojima S J Biochem; 2023 Jul; 174(2):125-130. PubMed ID: 37021788 [TBL] [Abstract][Full Text] [Related]
25. Two Distinct Conformations in 34 FliF Subunits Generate Three Different Symmetries within the Flagellar MS-Ring. Takekawa N; Kawamoto A; Sakuma M; Kato T; Kojima S; Kinoshita M; Minamino T; Namba K; Homma M; Imada K mBio; 2021 Mar; 12(2):. PubMed ID: 33653894 [TBL] [Abstract][Full Text] [Related]
26. Crystal structure of the FliF-FliG complex from Xue C; Lam KH; Zhang H; Sun K; Lee SH; Chen X; Au SWN J Biol Chem; 2018 Feb; 293(6):2066-2078. PubMed ID: 29229777 [TBL] [Abstract][Full Text] [Related]
27. Requirements for conversion of the Na(+)-driven flagellar motor of Vibrio cholerae to the H(+)-driven motor of Escherichia coli. Gosink KK; Häse CC J Bacteriol; 2000 Aug; 182(15):4234-40. PubMed ID: 10894732 [TBL] [Abstract][Full Text] [Related]
28. Roles of charged residues of rotor and stator in flagellar rotation: comparative study using H+-driven and Na+-driven motors in Escherichia coli. Yakushi T; Yang J; Fukuoka H; Homma M; Blair DF J Bacteriol; 2006 Feb; 188(4):1466-72. PubMed ID: 16452430 [TBL] [Abstract][Full Text] [Related]
29. Effect of sodium ions on conformations of the cytoplasmic loop of the PomA stator protein of Vibrio alginolyticus. Mino T; Nishikino T; Iwatsuki H; Kojima S; Homma M J Biochem; 2019 Oct; 166(4):331-341. PubMed ID: 31147681 [TBL] [Abstract][Full Text] [Related]
30. Bridging the N-terminal and middle domains in FliG of the flagellar rotor. Tupiņa D; Krah A; Marzinek JK; Zuzic L; Moverley AA; Constantinidou C; Bond PJ Curr Res Struct Biol; 2022; 4():59-67. PubMed ID: 35345452 [TBL] [Abstract][Full Text] [Related]
31. Role of the N- and C-terminal regions of FliF, the MS ring component in Kojima S; Kajino H; Hirano K; Inoue Y; Terashima H; Homma M J Bacteriol; 2021 May; 203(9):. PubMed ID: 33619151 [TBL] [Abstract][Full Text] [Related]
32. Biogenesis of the Flagellar Switch Complex in Escherichia coli: Formation of Sub-Complexes Independently of the Basal-Body MS-Ring. Kim EA; Panushka J; Meyer T; Ide N; Carlisle R; Baker S; Blair DF J Mol Biol; 2017 Jul; 429(15):2353-2359. PubMed ID: 28625846 [TBL] [Abstract][Full Text] [Related]
33. Biophysical characterization of the C-terminal region of FliG, an essential rotor component of the Na+-driven flagellar motor. Gohara M; Kobayashi S; Abe-Yoshizumi R; Nonoyama N; Kojima S; Asami Y; Homma M J Biochem; 2014 Feb; 155(2):83-9. PubMed ID: 24174548 [TBL] [Abstract][Full Text] [Related]
34. Structural insights into the interaction between the bacterial flagellar motor proteins FliF and FliG. Levenson R; Zhou H; Dahlquist FW Biochemistry; 2012 Jun; 51(25):5052-60. PubMed ID: 22670715 [TBL] [Abstract][Full Text] [Related]
35. Structural insight into the rotational switching mechanism of the bacterial flagellar motor. Minamino T; Imada K; Kinoshita M; Nakamura S; Morimoto YV; Namba K PLoS Biol; 2011 May; 9(5):e1000616. PubMed ID: 21572987 [TBL] [Abstract][Full Text] [Related]
36. The flagellar motor of Carroll BL; Nishikino T; Guo W; Zhu S; Kojima S; Homma M; Liu J Elife; 2020 Sep; 9():. PubMed ID: 32893817 [TBL] [Abstract][Full Text] [Related]
37. Structure of the C-terminal domain of FliG, a component of the rotor in the bacterial flagellar motor. Lloyd SA; Whitby FG; Blair DF; Hill CP Nature; 1999 Jul; 400(6743):472-5. PubMed ID: 10440379 [TBL] [Abstract][Full Text] [Related]
38. Diversification of Campylobacter jejuni Flagellar C-Ring Composition Impacts Its Structure and Function in Motility, Flagellar Assembly, and Cellular Processes. Henderson LD; Matthews-Palmer TRS; Gulbronson CJ; Ribardo DA; Beeby M; Hendrixson DR mBio; 2020 Jan; 11(1):. PubMed ID: 31911488 [TBL] [Abstract][Full Text] [Related]
39. A regulatory checkpoint during flagellar biogenesis in Campylobacter jejuni initiates signal transduction to activate transcription of flagellar genes. Boll JM; Hendrixson DR mBio; 2013 Sep; 4(5):e00432-13. PubMed ID: 24003178 [TBL] [Abstract][Full Text] [Related]
40. The conserved charged residues of the C-terminal region of FliG, a rotor component of the Na+-driven flagellar motor. Yorimitsu T; Mimaki A; Yakushi T; Homma M J Mol Biol; 2003 Nov; 334(3):567-83. PubMed ID: 14623195 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]