These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
174 related articles for article (PubMed ID: 38496245)
41. Assembly states of FliM and FliG within the flagellar switch complex. Sircar R; Borbat PP; Lynch MJ; Bhatnagar J; Beyersdorf MS; Halkides CJ; Freed JH; Crane BR J Mol Biol; 2015 Feb; 427(4):867-886. PubMed ID: 25536293 [TBL] [Abstract][Full Text] [Related]
42. Domain-based biophysical characterization of the structural and thermal stability of FliG, an essential rotor component of the Na Onoue Y; Abe-Yoshizumi R; Gohara M; Nishino Y; Kobayashi S; Asami Y; Homma M Biophys Physicobiol; 2016; 13():227-233. PubMed ID: 27924278 [TBL] [Abstract][Full Text] [Related]
43. Sodium-driven motor of the polar flagellum in marine bacteria Vibrio. Li N; Kojima S; Homma M Genes Cells; 2011 Oct; 16(10):985-99. PubMed ID: 21895888 [TBL] [Abstract][Full Text] [Related]
44. Assembly and stoichiometry of FliF and FlhA in Salmonella flagellar basal body. Morimoto YV; Ito M; Hiraoka KD; Che YS; Bai F; Kami-Ike N; Namba K; Minamino T Mol Microbiol; 2014 Mar; 91(6):1214-26. PubMed ID: 24450479 [TBL] [Abstract][Full Text] [Related]
45. Rusty, jammed, and well-oiled hinges: Mutations affecting the interdomain region of FliG, a rotor element of the Escherichia coli flagellar motor. Van Way SM; Millas SG; Lee AH; Manson MD J Bacteriol; 2004 May; 186(10):3173-81. PubMed ID: 15126479 [TBL] [Abstract][Full Text] [Related]
46. Structure of the rotor of the bacterial flagellar motor revealed by electron cryomicroscopy and single-particle image analysis. Suzuki H; Yonekura K; Namba K J Mol Biol; 2004 Mar; 337(1):105-13. PubMed ID: 15001355 [TBL] [Abstract][Full Text] [Related]
47. Torque generation in the flagellar motor of Escherichia coli: evidence of a direct role for FliG but not for FliM or FliN. Lloyd SA; Tang H; Wang X; Billings S; Blair DF J Bacteriol; 1996 Jan; 178(1):223-31. PubMed ID: 8550421 [TBL] [Abstract][Full Text] [Related]
48. Hoop-like role of the cytosolic interface helix in Vibrio PomA, an ion-conducting membrane protein, in the bacterial flagellar motor. Nishikino T; Sagara Y; Terashima H; Homma M; Kojima S J Biochem; 2022 Mar; 171(4):443-450. PubMed ID: 35015887 [TBL] [Abstract][Full Text] [Related]
49. Co-Folding of a FliF-FliG Split Domain Forms the Basis of the MS:C Ring Interface within the Bacterial Flagellar Motor. Lynch MJ; Levenson R; Kim EA; Sircar R; Blair DF; Dahlquist FW; Crane BR Structure; 2017 Feb; 25(2):317-328. PubMed ID: 28089452 [TBL] [Abstract][Full Text] [Related]
50. Role of the cytoplasmic C terminus of the FliF motor protein in flagellar assembly and rotation. Grünenfelder B; Gehrig S; Jenal U J Bacteriol; 2003 Mar; 185(5):1624-33. PubMed ID: 12591880 [TBL] [Abstract][Full Text] [Related]
51. Mutational analysis of the flagellar protein FliG: sites of interaction with FliM and implications for organization of the switch complex. Brown PN; Terrazas M; Paul K; Blair DF J Bacteriol; 2007 Jan; 189(2):305-12. PubMed ID: 17085573 [TBL] [Abstract][Full Text] [Related]
52. Characterization of PomA periplasmic loop and sodium ion entering in stator complex of sodium-driven flagellar motor. Nishikino T; Iwatsuki H; Mino T; Kojima S; Homma M J Biochem; 2020 Apr; 167(4):389-398. PubMed ID: 31738405 [TBL] [Abstract][Full Text] [Related]
53. Structure of flagellar motor proteins in complex allows for insights into motor structure and switching. Vartanian AS; Paz A; Fortgang EA; Abramson J; Dahlquist FW J Biol Chem; 2012 Oct; 287(43):35779-83. PubMed ID: 22896702 [TBL] [Abstract][Full Text] [Related]
54. Intact flagellar motor of Borrelia burgdorferi revealed by cryo-electron tomography: evidence for stator ring curvature and rotor/C-ring assembly flexion. Liu J; Lin T; Botkin DJ; McCrum E; Winkler H; Norris SJ J Bacteriol; 2009 Aug; 191(16):5026-36. PubMed ID: 19429612 [TBL] [Abstract][Full Text] [Related]
55. A molecular mechanism of direction switching in the flagellar motor of Escherichia coli. Paul K; Brunstetter D; Titen S; Blair DF Proc Natl Acad Sci U S A; 2011 Oct; 108(41):17171-6. PubMed ID: 21969567 [TBL] [Abstract][Full Text] [Related]
56. Conformational change in the periplamic region of the flagellar stator coupled with the assembly around the rotor. Zhu S; Takao M; Li N; Sakuma M; Nishino Y; Homma M; Kojima S; Imada K Proc Natl Acad Sci U S A; 2014 Sep; 111(37):13523-8. PubMed ID: 25197056 [TBL] [Abstract][Full Text] [Related]
57. Genetic analysis of revertants isolated from the rod-fragile Komatsu H; Hayashi F; Sasa M; Shikata K; Yamaguchi S; Namba K; Oosawa K Biophys Physicobiol; 2016; 13():13-25. PubMed ID: 27924254 [TBL] [Abstract][Full Text] [Related]
58. Site-Directed Cross-Linking Between Bacterial Flagellar Motor Proteins In Vivo. Terashima H; Homma M; Kojima S Methods Mol Biol; 2023; 2646():71-82. PubMed ID: 36842107 [TBL] [Abstract][Full Text] [Related]
59. Motility protein complexes in the bacterial flagellar motor. Tang H; Braun TF; Blair DF J Mol Biol; 1996 Aug; 261(2):209-21. PubMed ID: 8757288 [TBL] [Abstract][Full Text] [Related]
60. The three-dimensional structure of the flagellar rotor from a clockwise-locked mutant of Salmonella enterica serovar Typhimurium. Thomas DR; Francis NR; Xu C; DeRosier DJ J Bacteriol; 2006 Oct; 188(20):7039-48. PubMed ID: 17015643 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]