These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 38496320)

  • 21. Prediction of soil ecotoxicity against
    Paul R; Roy J; Roy K
    SAR QSAR Environ Res; 2023 Apr; 34(4):321-340. PubMed ID: 37218661
    [TBL] [Abstract][Full Text] [Related]  

  • 22. PBT assessment and prioritization of contaminants of emerging concern: Pharmaceuticals.
    Sangion A; Gramatica P
    Environ Res; 2016 May; 147():297-306. PubMed ID: 26921826
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The kernel-weighted local polynomial regression (KwLPR) approach: an efficient, novel tool for development of QSAR/QSAAR toxicity extrapolation models.
    Gajewicz-Skretna A; Kar S; Piotrowska M; Leszczynski J
    J Cheminform; 2021 Feb; 13(1):9. PubMed ID: 33579384
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A Simple, Robust and Efficient Computational Method for n-Octanol/Water Partition Coefficients of Substituted Aromatic Drugs.
    Bahmani A; Saaidpour S; Rostami A
    Sci Rep; 2017 Jul; 7(1):5760. PubMed ID: 28720783
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Versatile modelling of polyoxymethylene-water partition coefficients for hydrophobic organic contaminants using linear and nonlinear approaches.
    Zhu T; Gu Y; Cheng H; Chen M
    Sci Total Environ; 2020 Aug; 728():138881. PubMed ID: 32361362
    [TBL] [Abstract][Full Text] [Related]  

  • 26. 2D Quantitative structure-property relationship study of mycotoxins by multiple linear regression and support vector machine.
    Khosrokhavar R; Ghasemi JB; Shiri F
    Int J Mol Sci; 2010 Aug; 11(9):3052-68. PubMed ID: 20957079
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Read-across-based intelligent learning: development of a global q-RASAR model for the efficient quantitative predictions of skin sensitization potential of diverse organic chemicals.
    Banerjee A; Roy K
    Environ Sci Process Impacts; 2023 Oct; 25(10):1626-1644. PubMed ID: 37682520
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Are we ready to combat the ecotoxicity of COVID-19 pharmaceuticals? An in silico aquatic risk assessment.
    Khan K; Kar S; Roy K
    Aquat Toxicol; 2023 Mar; 256():106416. PubMed ID: 36758333
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Chemometric modeling of acute toxicity of diverse aromatic compounds against Rana japonica.
    Nath A; Roy K
    Toxicol In Vitro; 2022 Sep; 83():105427. PubMed ID: 35777580
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ecotoxicological QSAR modelling of the acute toxicity of fused and non-fused polycyclic aromatic hydrocarbons (FNFPAHs) against two aquatic organisms: Consensus modelling and comparison with ECOSAR.
    Li F; Sun G; Fan T; Zhang N; Zhao L; Zhong R; Peng Y
    Aquat Toxicol; 2023 Feb; 255():106393. PubMed ID: 36621240
    [TBL] [Abstract][Full Text] [Related]  

  • 31. In Silico Models for Ecotoxicity of Pharmaceuticals.
    Roy K; Kar S
    Methods Mol Biol; 2016; 1425():237-304. PubMed ID: 27311470
    [TBL] [Abstract][Full Text] [Related]  

  • 32. First report on soil ecotoxicity prediction against Folsomia candida using intelligent consensus predictions and chemical read-across.
    Paul R; Chatterjee M; Roy K
    Environ Sci Pollut Res Int; 2022 Dec; 29(58):88302-88317. PubMed ID: 35829883
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Chemometric modeling of aquatic toxicity of contaminants of emerging concern (CECs) in Dugesia japonica and its interspecies correlation with daphnia and fish: QSTR and QSTTR approaches.
    Hossain KA; Roy K
    Ecotoxicol Environ Saf; 2018 Dec; 166():92-101. PubMed ID: 30253287
    [TBL] [Abstract][Full Text] [Related]  

  • 34. First report on chemometric modeling of tilapia fish aquatic toxicity to organic chemicals: Toxicity data gap filling.
    Yang S; Kar S
    Sci Total Environ; 2024 Jan; 907():167991. PubMed ID: 37898216
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Genetic Algorithm and Self-Organizing Maps for QSPR Study of Some N-aryl Derivatives as Butyrylcholinesterase Inhibitors.
    Ahmadi S; Ganji S
    Curr Drug Discov Technol; 2016; 13(4):232-253. PubMed ID: 27457492
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Prediction of the maximum absorption wavelength of azobenzene dyes by QSPR tools.
    Xu X; Luan F; Liu H; Cheng J; Zhang X
    Spectrochim Acta A Mol Biomol Spectrosc; 2011 Dec; 83(1):353-61. PubMed ID: 21930420
    [TBL] [Abstract][Full Text] [Related]  

  • 37. In silico prediction of dermal penetration rate of chemicals from their molecular structural descriptors.
    Fatemi MH; Malekzadeh H
    Environ Toxicol Pharmacol; 2012 Sep; 34(2):297-306. PubMed ID: 22659232
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Application of chemometric methods and QSAR models to support pesticide risk assessment starting from ecotoxicological datasets.
    Galimberti F; Moretto A; Papa E
    Water Res; 2020 May; 174():115583. PubMed ID: 32092543
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Toxicity Assessment of the Binary Mixtures of Aquatic Organisms Based on Different Hypothetical Descriptors.
    Ji M; Zhang L; Zhuang X; Tian C; Luan F; Cordeiro MNDS
    Molecules; 2022 Sep; 27(19):. PubMed ID: 36234923
    [TBL] [Abstract][Full Text] [Related]  

  • 40. New Research for Quinazoline-2,4-diones as HPPD Inhibitors Based on 2D-MLR and 3D-QSAR Models.
    Fu Y; Sun YN; Cao HF; Yi KH; Zhao LX; Li JZ; Ye F
    Comb Chem High Throughput Screen; 2017; 20(9):748-759. PubMed ID: 28637410
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.