These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 38496403)

  • 1. Artificial neural network for brain-machine interface consistently produces more naturalistic finger movements than linear methods.
    Temmar H; Willsey MS; Costello JT; Mender MJ; Cubillos LH; Lam JL; Wallace DM; Kelberman MM; Patil PG; Chestek CA
    bioRxiv; 2024 Mar; ():. PubMed ID: 38496403
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Real-time brain-machine interface in non-human primates achieves high-velocity prosthetic finger movements using a shallow feedforward neural network decoder.
    Willsey MS; Nason-Tomaszewski SR; Ensel SR; Temmar H; Mender MJ; Costello JT; Patil PG; Chestek CA
    Nat Commun; 2022 Nov; 13(1):6899. PubMed ID: 36371498
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Real-time linear prediction of simultaneous and independent movements of two finger groups using an intracortical brain-machine interface.
    Nason SR; Mender MJ; Vaskov AK; Willsey MS; Ganesh Kumar N; Kung TA; Patil PG; Chestek CA
    Neuron; 2021 Oct; 109(19):3164-3177.e8. PubMed ID: 34499856
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Balancing Memorization and Generalization in RNNs for High Performance Brain-Machine Interfaces.
    Costello JT; Temmar H; Cubillos LH; Mender MJ; Wallace DM; Willsey MS; Patil PG; Chestek CA
    bioRxiv; 2023 May; ():. PubMed ID: 37292755
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Learning neural decoders without labels using multiple data streams.
    Peterson SM; Rao RPN; Brunton BW
    J Neural Eng; 2022 Aug; 19(4):. PubMed ID: 35905727
    [No Abstract]   [Full Text] [Related]  

  • 6. A recurrent neural network for closed-loop intracortical brain-machine interface decoders.
    Sussillo D; Nuyujukian P; Fan JM; Kao JC; Stavisky SD; Ryu S; Shenoy K
    J Neural Eng; 2012 Apr; 9(2):026027. PubMed ID: 22427488
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Training in Use of Brain-Machine Interface-Controlled Robotic Hand Improves Accuracy Decoding Two Types of Hand Movements.
    Fukuma R; Yanagisawa T; Yokoi H; Hirata M; Yoshimine T; Saitoh Y; Kamitani Y; Kishima H
    Front Neurosci; 2018; 12():478. PubMed ID: 30050405
    [No Abstract]   [Full Text] [Related]  

  • 8. Activities of daily living with bionic arm improved by combination training and latching filter in prosthesis control comparison.
    Paskett MD; Brinton MR; Hansen TC; George JA; Davis TS; Duncan CC; Clark GA
    J Neuroeng Rehabil; 2021 Feb; 18(1):45. PubMed ID: 33632237
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Generalized neural decoders for transfer learning across participants and recording modalities.
    Peterson SM; Steine-Hanson Z; Davis N; Rao RPN; Brunton BW
    J Neural Eng; 2021 Mar; 18(2):. PubMed ID: 33418552
    [No Abstract]   [Full Text] [Related]  

  • 10. Cortical Decoding of Individual Finger Group Motions Using ReFIT Kalman Filter.
    Vaskov AK; Irwin ZT; Nason SR; Vu PP; Nu CS; Bullard AJ; Hill M; North N; Patil PG; Chestek CA
    Front Neurosci; 2018; 12():751. PubMed ID: 30455621
    [No Abstract]   [Full Text] [Related]  

  • 11. The decoder design and performance comparative analysis for closed-loop brain-machine interface system.
    Pan H; Fu Y; Zhang Q; Zhang J; Qin X
    Cogn Neurodyn; 2024 Feb; 18(1):147-164. PubMed ID: 39170600
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Audio-induced medial prefrontal cortical dynamics enhances coadaptive learning in brain-machine interfaces.
    Tan J; Zhang X; Wu S; Song Z; Chen S; Huang Y; Wang Y
    J Neural Eng; 2023 Oct; 20(5):. PubMed ID: 37812934
    [No Abstract]   [Full Text] [Related]  

  • 13. Empirical comparison of deep learning methods for EEG decoding.
    de Oliveira IH; Rodrigues AC
    Front Neurosci; 2022; 16():1003984. PubMed ID: 36704007
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Finger movements are mainly represented by a linear transformation of energy in band-specific ECoG signals.
    Marjaninejad A; Taherian B; Valero-Cuevas FJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():986-989. PubMed ID: 29060039
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unsupervised, piecewise linear decoding enables an accurate prediction of muscle activity in a multi-task brain computer interface.
    Ma X; Rizzoglio F; Bodkin KL; Miller LE
    bioRxiv; 2024 Sep; ():. PubMed ID: 39314275
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The influence of non-stationarity of spike signals on decoding performance in intracortical brain-computer interface: a simulation study.
    Wan Z; Liu T; Ran X; Liu P; Chen W; Zhang S
    Front Comput Neurosci; 2023; 17():1135783. PubMed ID: 37251598
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Robust neural decoding for dexterous control of robotic hand kinematics.
    Fan J; Vargas L; Kamper DG; Hu X
    Comput Biol Med; 2023 Aug; 162():107139. PubMed ID: 37301095
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adaptive decoding for brain-machine interfaces through Bayesian parameter updates.
    Li Z; O'Doherty JE; Lebedev MA; Nicolelis MA
    Neural Comput; 2011 Dec; 23(12):3162-204. PubMed ID: 21919788
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep Learning Movement Intent Decoders Trained With Dataset Aggregation for Prosthetic Limb Control.
    Dantas H; Warren DJ; Wendelken SM; Davis TS; Clark GA; Mathews VJ
    IEEE Trans Biomed Eng; 2019 Nov; 66(11):3192-3203. PubMed ID: 30835207
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Decoding continuous limb movements from high-density epidural electrode arrays using custom spatial filters.
    Marathe AR; Taylor DM
    J Neural Eng; 2013 Jun; 10(3):036015. PubMed ID: 23611833
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.