These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 38496496)

  • 1. Maximum Likelihood Inference of Time-scaled Cell Lineage Trees with Mixed-type Missing Data.
    Mai U; Chu G; Raphael BJ
    bioRxiv; 2024 Mar; ():. PubMed ID: 38496496
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Startle: A star homoplasy approach for CRISPR-Cas9 lineage tracing.
    Sashittal P; Schmidt H; Chan M; Raphael BJ
    Cell Syst; 2023 Dec; 14(12):1113-1121.e9. PubMed ID: 38128483
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Maximum likelihood phylogeographic inference of cell motility and cell division from spatial lineage tracing data.
    Mai U; Hu G; Raphael BJ
    Bioinformatics; 2024 Jun; 40(Supplement_1):i228-i236. PubMed ID: 38940146
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ConvexML: Scalable and accurate inference of single-cell chronograms from CRISPR/Cas9 lineage tracing data.
    Prillo S; Ravoor A; Yosef N; Song YS
    bioRxiv; 2023 Dec; ():. PubMed ID: 38076815
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ESTIMATION OF CELL LINEAGE TREES BY MAXIMUM-LIKELIHOOD PHYLOGENETICS.
    Feng J; Dewitt WS; McKenna A; Simon N; Willis AD; Matsen FA
    Ann Appl Stat; 2021 Mar; 15(1):343-362. PubMed ID: 35990087
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coalescent-based species tree inference from gene tree topologies under incomplete lineage sorting by maximum likelihood.
    Wu Y
    Evolution; 2012 Mar; 66(3):763-775. PubMed ID: 22380439
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Theoretical and Practical Considerations when using Retroelement Insertions to Estimate Species Trees in the Anomaly Zone.
    Molloy EK; Gatesy J; Springer MS
    Syst Biol; 2022 Apr; 71(3):721-740. PubMed ID: 34677617
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bayesian and maximum likelihood phylogenetic analyses of protein sequence data under relative branch-length differences and model violation.
    Mar JC; Harlow TJ; Ragan MA
    BMC Evol Biol; 2005 Jan; 5():8. PubMed ID: 15676079
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Joint inference of cell lineage and mitochondrial evolution from single-cell sequencing data.
    Sashittal P; Chen V; Pasarkar A; Raphael BJ
    Bioinformatics; 2024 Jun; 40(Supplement_1):i218-i227. PubMed ID: 38940122
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MAST: Phylogenetic Inference with Mixtures Across Sites and Trees.
    Wong TKF; Cherryh C; Rodrigo AG; Hahn MW; Minh BQ; Lanfear R
    Syst Biol; 2024 Feb; ():. PubMed ID: 38421146
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Collapsing dubiously resolved gene-tree branches in phylogenomic coalescent analyses.
    Simmons MP; Gatesy J
    Mol Phylogenet Evol; 2021 May; 158():107092. PubMed ID: 33545272
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Maximum likelihood estimates of species trees: how accuracy of phylogenetic inference depends upon the divergence history and sampling design.
    McCormack JE; Huang H; Knowles LL
    Syst Biol; 2009 Oct; 58(5):501-8. PubMed ID: 20525604
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A structural EM algorithm for phylogenetic inference.
    Friedman N; Ninio M; Pe'er I; Pupko T
    J Comput Biol; 2002; 9(2):331-53. PubMed ID: 12015885
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adaptive RAxML-NG: Accelerating Phylogenetic Inference under Maximum Likelihood using Dataset Difficulty.
    Togkousidis A; Kozlov OM; Haag J; Höhler D; Stamatakis A
    Mol Biol Evol; 2023 Oct; 40(10):. PubMed ID: 37804116
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparing Phylogenetic Approaches to Reconstructing Cell Lineage From Microsatellites With Missing Data.
    Lyne AM; Perie L
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(6):2291-2301. PubMed ID: 32386163
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Theoretical guarantees for phylogeny inference from single-cell lineage tracing.
    Wang R; Zhang R; Khodaverdian A; Yosef N
    Proc Natl Acad Sci U S A; 2023 Mar; 120(12):e2203352120. PubMed ID: 36927151
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accurate and efficient cell lineage tree inference from noisy single cell data: the maximum likelihood perfect phylogeny approach.
    Wu Y
    Bioinformatics; 2020 Feb; 36(3):742-750. PubMed ID: 31504211
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relative efficiencies of the maximum-likelihood, neighbor-joining, and maximum-parsimony methods when substitution rate varies with site.
    Tateno Y; Takezaki N; Nei M
    Mol Biol Evol; 1994 Mar; 11(2):261-77. PubMed ID: 8170367
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Larger, unfiltered datasets are more effective at resolving phylogenetic conflict: Introns, exons, and UCEs resolve ambiguities in Golden-backed frogs (Anura: Ranidae; genus Hylarana).
    Chan KO; Hutter CR; Wood PL; Grismer LL; Brown RM
    Mol Phylogenet Evol; 2020 Oct; 151():106899. PubMed ID: 32590046
    [TBL] [Abstract][Full Text] [Related]  

  • 20. TiDeTree: a Bayesian phylogenetic framework to estimate single-cell trees and population dynamic parameters from genetic lineage tracing data.
    Seidel S; Stadler T
    Proc Biol Sci; 2022 Nov; 289(1986):20221844. PubMed ID: 36350216
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.