These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 38496581)
1. Metabolic Quadrivalency in RSeT Human Embryonic Stem Cells. Chen KG; Park K; Maric D; Johnson KR; Robey PG; Mallon BS bioRxiv; 2024 Feb; ():. PubMed ID: 38496581 [TBL] [Abstract][Full Text] [Related]
2. Resistance to Naïve and Formative Pluripotency Conversion in RSeT Human Embryonic Stem Cells. Chen KG; Johnson KR; Park K; Maric D; Yang F; Liu WF; Fann YC; Mallon BS; Robey PG bioRxiv; 2024 Apr; ():. PubMed ID: 38410444 [TBL] [Abstract][Full Text] [Related]
3. Transcriptional landscape changes during human embryonic stem cell derivation. Warrier S; Taelman J; Tilleman L; Van der Jeught M; Duggal G; Lierman S; Popovic M; Van Soom A; Peelman L; Van Nieuwerburgh F; Deforce D; Chuva de Sousa Lopes SM; De Sutter P; Heindryckx B Mol Hum Reprod; 2018 Nov; 24(11):543-555. PubMed ID: 30239859 [TBL] [Abstract][Full Text] [Related]
4. Pluripotent states of human embryonic stem cells. Chen Y; Lai D Cell Reprogram; 2015 Feb; 17(1):1-6. PubMed ID: 25393391 [TBL] [Abstract][Full Text] [Related]
5. Wnt/β-catenin signaling promotes self-renewal and inhibits the primed state transition in naïve human embryonic stem cells. Xu Z; Robitaille AM; Berndt JD; Davidson KC; Fischer KA; Mathieu J; Potter JC; Ruohola-Baker H; Moon RT Proc Natl Acad Sci U S A; 2016 Oct; 113(42):E6382-E6390. PubMed ID: 27698112 [TBL] [Abstract][Full Text] [Related]
6. Crotonylation of GAPDH regulates human embryonic stem cell endodermal lineage differentiation and metabolic switch. Zhang J; Shi G; Pang J; Zhu X; Feng Q; Na J; Ma W; Liu D; Songyang Z Stem Cell Res Ther; 2023 Apr; 14(1):63. PubMed ID: 37013624 [TBL] [Abstract][Full Text] [Related]
7. Alternative Routes to Induce Naïve Pluripotency in Human Embryonic Stem Cells. Duggal G; Warrier S; Ghimire S; Broekaert D; Van der Jeught M; Lierman S; Deroo T; Peelman L; Van Soom A; Cornelissen R; Menten B; Mestdagh P; Vandesompele J; Roost M; Slieker RC; Heijmans BT; Deforce D; De Sutter P; De Sousa Lopes SC; Heindryckx B Stem Cells; 2015 Sep; 33(9):2686-98. PubMed ID: 26108678 [TBL] [Abstract][Full Text] [Related]
8. The metabolic network model of primed/naive human embryonic stem cells underlines the importance of oxidation-reduction potential and tryptophan metabolism in primed pluripotency. Yousefi M; Marashi SA; Sharifi-Zarchi A; Taleahmad S Cell Biosci; 2019; 9():71. PubMed ID: 31485322 [TBL] [Abstract][Full Text] [Related]
9. Long noncoding RNA CCDC144NL-AS1 knockdown induces naïve-like state conversion of human pluripotent stem cells. Wang Y; Guo B; Xiao Z; Lin H; Zhang X; Song Y; Li Y; Gao X; Yu J; Shao Z; Li X; Luo Y; Li S Stem Cell Res Ther; 2019 Jul; 10(1):220. PubMed ID: 31358062 [TBL] [Abstract][Full Text] [Related]
10. Metabolic profiling and flux analysis of MEL-2 human embryonic stem cells during exponential growth at physiological and atmospheric oxygen concentrations. Turner J; Quek LE; Titmarsh D; Krömer JO; Kao LP; Nielsen L; Wolvetang E; Cooper-White J PLoS One; 2014; 9(11):e112757. PubMed ID: 25412279 [TBL] [Abstract][Full Text] [Related]
11. Glycolytic Metabolism Plays a Functional Role in Regulating Human Pluripotent Stem Cell State. Gu W; Gaeta X; Sahakyan A; Chan AB; Hong CS; Kim R; Braas D; Plath K; Lowry WE; Christofk HR Cell Stem Cell; 2016 Oct; 19(4):476-490. PubMed ID: 27618217 [TBL] [Abstract][Full Text] [Related]
13. A Comparative Study of Cell Culture Conditions during Conversion from Primed to Naive Human Pluripotent Stem Cells. Romayor I; Herrera L; Burón M; Martin-Inaraja M; Prieto L; Etxaniz J; Inglés-Ferrándiz M; Pineda JR; Eguizabal C Biomedicines; 2022 Jun; 10(6):. PubMed ID: 35740381 [TBL] [Abstract][Full Text] [Related]
14. Positioning canine induced pluripotent stem cells (iPSCs) in the reprogramming landscape of naïve or primed state in comparison to mouse and human iPSCs. Menon DV; Bhaskar S; Sheshadri P; Joshi CG; Patel D; Kumar A Life Sci; 2021 Jan; 264():118701. PubMed ID: 33130086 [TBL] [Abstract][Full Text] [Related]
15. Induction of Human Naïve Pluripotency Using 5i/L/A Medium. Fischer LA; Khan SA; Theunissen TW Methods Mol Biol; 2022; 2416():13-28. PubMed ID: 34870827 [TBL] [Abstract][Full Text] [Related]
16. Capturing Human Naïve Pluripotency in the Embryo and in the Dish. Zimmerlin L; Park TS; Zambidis ET Stem Cells Dev; 2017 Aug; 26(16):1141-1161. PubMed ID: 28537488 [TBL] [Abstract][Full Text] [Related]
17. Constraining the Pluripotent Fate of Human Embryonic Stem Cells for Tissue Engineering and Cell Therapy - The Turning Point of Cell-Based Regenerative Medicine. Parsons XH Br Biotechnol J; 2013 Oct; 3(4):424-457. PubMed ID: 24926434 [TBL] [Abstract][Full Text] [Related]
18. Robust Expansion of Human Pluripotent Stem Cells: Integration of Bioprocess Design With Transcriptomic and Metabolomic Characterization. Silva MM; Rodrigues AF; Correia C; Sousa MF; Brito C; Coroadinha AS; Serra M; Alves PM Stem Cells Transl Med; 2015 Jul; 4(7):731-42. PubMed ID: 25979863 [TBL] [Abstract][Full Text] [Related]
19. Telomere heterogeneity linked to metabolism and pluripotency state revealed by simultaneous analysis of telomere length and RNA-seq in the same human embryonic stem cell. Wang H; Zhang K; Liu Y; Fu Y; Gao S; Gong P; Wang H; Zhou Z; Zeng M; Wu Z; Sun Y; Chen T; Li S; Liu L BMC Biol; 2017 Dec; 15(1):114. PubMed ID: 29216888 [TBL] [Abstract][Full Text] [Related]
20. IDO1 Maintains Pluripotency of Primed Human Embryonic Stem Cells by Promoting Glycolysis. Liu X; Wang M; Jiang T; He J; Fu X; Xu Y Stem Cells; 2019 Sep; 37(9):1158-1165. PubMed ID: 31145821 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]