These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 38496610)

  • 1. Temporal attention recruits fronto-cingulate cortex to amplify stimulus representations.
    Zhu J; Tian KJ; Carrasco M; Denison RN
    bioRxiv; 2024 Mar; ():. PubMed ID: 38496610
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Previously Reward-Associated Stimuli Capture Spatial Attention in the Absence of Changes in the Corresponding Sensory Representations as Measured with MEG.
    Tankelevitch L; Spaak E; Rushworth MFS; Stokes MG
    J Neurosci; 2020 Jun; 40(26):5033-5050. PubMed ID: 32366722
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The time-course of feature-based attention effects dissociated from temporal expectation and target-related processes.
    Moerel D; Grootswagers T; Robinson AK; Shatek SM; Woolgar A; Carlson TA; Rich AN
    Sci Rep; 2022 Apr; 12(1):6968. PubMed ID: 35484363
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Temporal uncertainty enhances suppression of neural responses to predictable visual stimuli.
    Nara S; Lizarazu M; Richter CG; Dima DC; Cichy RM; Bourguignon M; Molinaro N
    Neuroimage; 2021 Oct; 239():118314. PubMed ID: 34175428
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Decoding Object-Based Auditory Attention from Source-Reconstructed MEG Alpha Oscillations.
    de Vries IEJ; Marinato G; Baldauf D
    J Neurosci; 2021 Oct; 41(41):8603-8617. PubMed ID: 34429378
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Decoding face information in time, frequency and space from direct intracranial recordings of the human brain.
    Tsuchiya N; Kawasaki H; Oya H; Howard MA; Adolphs R
    PLoS One; 2008; 3(12):e3892. PubMed ID: 19065268
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Directing Voluntary Temporal Attention Increases Fixational Stability.
    Denison RN; Yuval-Greenberg S; Carrasco M
    J Neurosci; 2019 Jan; 39(2):353-363. PubMed ID: 30459223
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatial attention modulates visual gamma oscillations across the human ventral stream.
    Magazzini L; Singh KD
    Neuroimage; 2018 Feb; 166():219-229. PubMed ID: 29104149
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatial attention enhances cortical tracking of quasi-rhythmic visual stimuli.
    Tabarelli D; Keitel C; Gross J; Baldauf D
    Neuroimage; 2020 Mar; 208():116444. PubMed ID: 31816422
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The time-course of component processes of selective attention.
    Wen T; Duncan J; Mitchell DJ
    Neuroimage; 2019 Oct; 199():396-407. PubMed ID: 31150787
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Suppressed Sensory Response to Predictable Object Stimuli throughout the Ventral Visual Stream.
    Richter D; Ekman M; de Lange FP
    J Neurosci; 2018 Aug; 38(34):7452-7461. PubMed ID: 30030402
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phasic modulation of visual representations during sustained attention.
    van Es MWJ; Marshall TR; Spaak E; Jensen O; Schoffelen JM
    Eur J Neurosci; 2022 Jun; 55(11-12):3191-3208. PubMed ID: 33319447
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neural source dynamics of brain responses to continuous stimuli: Speech processing from acoustics to comprehension.
    Brodbeck C; Presacco A; Simon JZ
    Neuroimage; 2018 May; 172():162-174. PubMed ID: 29366698
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bottom-Up and Top-Down Factors Differentially Influence Stimulus Representations Across Large-Scale Attentional Networks.
    Long NM; Kuhl BA
    J Neurosci; 2018 Mar; 38(10):2495-2504. PubMed ID: 29437930
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Attention Reorients Periodically.
    Dugué L; Roberts M; Carrasco M
    Curr Biol; 2016 Jun; 26(12):1595-1601. PubMed ID: 27265395
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Separable mechanisms underlying global feature-based attention.
    Bondarenko R; Boehler CN; Stoppel CM; Heinze HJ; Schoenfeld MA; Hopf JM
    J Neurosci; 2012 Oct; 32(44):15284-95. PubMed ID: 23115167
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Attention Biases Competition for Visual Representation via Dissociable Influences from Frontal and Parietal Cortex.
    Sheldon AD; Saad E; Sahan MI; Meyering EE; Starrett MJ; LaRocque JJ; Rose NS; Postle BR
    J Cogn Neurosci; 2021 Apr; 33(4):739-755. PubMed ID: 33475448
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatiotemporal dynamics in human visual cortex rapidly encode the emotional content of faces.
    Dima DC; Perry G; Messaritaki E; Zhang J; Singh KD
    Hum Brain Mapp; 2018 Oct; 39(10):3993-4006. PubMed ID: 29885055
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Form-from-motion: MEG evidence for time course and processing sequence.
    Schoenfeld MA; Woldorff M; Düzel E; Scheich H; Heinze HJ; Mangun GR
    J Cogn Neurosci; 2003 Feb; 15(2):157-72. PubMed ID: 12676054
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Convolutional neural network-based encoding and decoding of visual object recognition in space and time.
    Seeliger K; Fritsche M; Güçlü U; Schoenmakers S; Schoffelen JM; Bosch SE; van Gerven MAJ
    Neuroimage; 2018 Oct; 180(Pt A):253-266. PubMed ID: 28723578
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.