These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 38497100)

  • 21. From Binary Cu2S to ternary Cu-In-S and quaternary Cu-In-Zn-S nanocrystals with tunable composition via partial cation exchange.
    Akkerman QA; Genovese A; George C; Prato M; Moreels I; Casu A; Marras S; Curcio A; Scarpellini A; Pellegrino T; Manna L; Lesnyak V
    ACS Nano; 2015 Jan; 9(1):521-31. PubMed ID: 25551255
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Sulfide nanocrystal inks for dense Cu(In1-xGa(x))(S1-ySe(y))2 absorber films and their photovoltaic performance.
    Guo Q; Ford GM; Hillhouse HW; Agrawal R
    Nano Lett; 2009 Aug; 9(8):3060-5. PubMed ID: 19518118
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Origin of the Order-Disorder Transition and the Associated Anomalous Change of Thermopower in AgBiS2 Nanocrystals: A Combined Experimental and Theoretical Study.
    Guin SN; Banerjee S; Sanyal D; Pati SK; Biswas K
    Inorg Chem; 2016 Jun; 55(12):6323-31. PubMed ID: 27276279
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ultrafast synthesis of ultrasmall polyethylenimine-protected AgBiS
    Lei P; An R; Zheng X; Zhang P; Du K; Zhang M; Dong L; Gao X; Feng J; Zhang H
    Nanoscale; 2018 Sep; 10(35):16765-16774. PubMed ID: 30156243
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Phase Transformations of Copper Sulfide Nanocrystals: Towards Highly Efficient Quantum-Dot-Sensitized Solar Cells.
    Liu L; Liu C; Fu W; Deng L; Zhong H
    Chemphyschem; 2016 Mar; 17(5):771-6. PubMed ID: 26337257
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Carrier Dynamics of Efficient Triplet Harvesting in AgBiS
    Geng P; Chen D; Shivarudraiah SB; Chen X; Guo L; Halpert JE
    Adv Sci (Weinh); 2023 May; 10(13):e2300177. PubMed ID: 36938855
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cation exchange on the nanoscale: an emerging technique for new material synthesis, device fabrication, and chemical sensing.
    Rivest JB; Jain PK
    Chem Soc Rev; 2013 Jan; 42(1):89-96. PubMed ID: 22968228
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Synthesis of Ternary and Quaternary Group III-Arsenide Colloidal Quantum Dots via High-Temperature Cation Exchange in Molten Salts: The Importance of Molten Salt Speciation.
    Ondry JC; Gupta A; Zhou Z; Chang JH; Talapin DV
    ACS Nano; 2024 Jan; 18(1):858-873. PubMed ID: 38108289
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Efficient and Stable PbS Quantum Dot Solar Cells by Triple-Cation Perovskite Passivation.
    Albaladejo-Siguan M; Becker-Koch D; Taylor AD; Sun Q; Lami V; Oppenheimer PG; Paulus F; Vaynzof Y
    ACS Nano; 2020 Jan; 14(1):384-393. PubMed ID: 31721556
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Photovoltaic devices employing ternary PbSxSe1-x nanocrystals.
    Ma W; Luther JM; Zheng H; Wu Y; Alivisatos AP
    Nano Lett; 2009 Apr; 9(4):1699-703. PubMed ID: 19351196
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Alternative synthesis of CuFeSe2 nanocrystals with magnetic and photoelectric properties.
    Wang W; Jiang J; Ding T; Wang C; Zuo J; Yang Q
    ACS Appl Mater Interfaces; 2015 Feb; 7(4):2235-41. PubMed ID: 25562289
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A Selective Cation Exchange Strategy for the Synthesis of Colloidal Yb
    Creutz SE; Fainblat R; Kim Y; De Siena MC; Gamelin DR
    J Am Chem Soc; 2017 Aug; 139(34):11814-11824. PubMed ID: 28750510
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Sequential, low-temperature aqueous synthesis of Ag-In-S/Zn quantum dots
    Ozdemir NK; Cline JP; Sakizadeh J; Collins SM; Brown AC; McIntosh S; Kiely CJ; Snyder MA
    J Mater Chem B; 2022 Jun; 10(24):4529-4545. PubMed ID: 35608268
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Self-regulated route to ternary hybrid nanocrystals of Ag-Ag2S-CdS with near-infrared photoluminescence and enhanced photothermal conversion.
    Zhu G; Bao C; Liu Y; Shen X; Xi C; Xu Z; Ji Z
    Nanoscale; 2014 Oct; 6(19):11147-56. PubMed ID: 25212685
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Lead Selenide (PbSe) Colloidal Quantum Dot Solar Cells with >10% Efficiency.
    Ahmad W; He J; Liu Z; Xu K; Chen Z; Yang X; Li D; Xia Y; Zhang J; Chen C
    Adv Mater; 2019 Aug; 31(33):e1900593. PubMed ID: 31222874
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Microfluidic Technology: Uncovering the Mechanisms of Nanocrystal Nucleation and Growth.
    Lignos I; Maceiczyk R; deMello AJ
    Acc Chem Res; 2017 May; 50(5):1248-1257. PubMed ID: 28467055
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Colloidal Nanocrystals of Lead-Free Double-Perovskite (Elpasolite) Semiconductors: Synthesis and Anion Exchange To Access New Materials.
    Creutz SE; Crites EN; De Siena MC; Gamelin DR
    Nano Lett; 2018 Feb; 18(2):1118-1123. PubMed ID: 29376378
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Origin of Unusual Excitonic Absorption and Emission from Colloidal Ag2S Nanocrystals: Ultrafast Photophysics and Solar Cell.
    Mir WJ; Swarnkar A; Sharma R; Katti A; Adarsh KV; Nag A
    J Phys Chem Lett; 2015 Oct; 6(19):3915-22. PubMed ID: 26722893
    [TBL] [Abstract][Full Text] [Related]  

  • 39. In Situ Biomineralization of Cu
    Sadeghnejad A; Lu L; Cline J; Ozdemir NK; Snyder MA; Kiely CJ; McIntosh S
    ACS Appl Mater Interfaces; 2019 Dec; 11(49):45656-45664. PubMed ID: 31730749
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Improving the Power-Conversion Efficiency through Alloying in Common Anion CdZnX (X=S, Se) Nanocrystal Sensitized Solar Cells.
    Maiti S; Anand P; Azlan F; Dana J; Ghosh HN
    Chemphyschem; 2019 Oct; 20(20):2662-2667. PubMed ID: 31120604
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.