These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 38497455)

  • 1. Human Observer Sensitivity to Temporal Noise During B-Mode Ultrasound Scanning: Characterization and Imaging Implications.
    Huber MT; Flint KM; McNally PJ; Ellestad SC; Trahey GE
    Ultrason Imaging; 2024 May; 46(3):151-163. PubMed ID: 38497455
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vivo demonstration of a real-time temporal SNR acoustic output adjustment method.
    Huber MT; Bradway DP; McNally PJ; Ellestad SC; Trahey GE
    IEEE Trans Ultrason Ferroelectr Freq Control; 2024 May; PP():. PubMed ID: 38758627
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vivo application of short-lag spatial coherence and harmonic spatial coherence imaging in fetal ultrasound.
    Kakkad V; Dahl J; Ellestad S; Trahey G
    Ultrason Imaging; 2015 Apr; 37(2):101-16. PubMed ID: 25116292
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rayleigh-maximum-likelihood bilateral filter for ultrasound image enhancement.
    Li H; Wu J; Miao A; Yu P; Chen J; Zhang Y
    Biomed Eng Online; 2017 Apr; 16(1):46. PubMed ID: 28412952
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 4D numerical observer for lesion detection in respiratory-gated PET.
    Lorsakul A; Li Q; Trott CM; Hoog C; Petibon Y; Ouyang J; Laine AF; El Fakhri G
    Med Phys; 2014 Oct; 41(10):102504. PubMed ID: 25281979
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spatiotemporal Coherence to Quantify Sources of Image Degradation in Ultrasonic Imaging.
    Vienneau EP; Ozgun KA; Byram BC
    IEEE Trans Ultrason Ferroelectr Freq Control; 2022 Apr; 69(4):1337-1352. PubMed ID: 35175919
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Coded Excitation Framework for High SNR Transcranial Ultrasound Imaging.
    Vienneau EP; Byram BC
    IEEE Trans Med Imaging; 2023 Oct; 42(10):2886-2898. PubMed ID: 37079411
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrasound Ultrafast Power Doppler Imaging with High Signal-to-Noise Ratio by Temporal Multiply-and-Sum (TMAS) Autocorrelation.
    Shen CC; Guo FT
    Sensors (Basel); 2022 Oct; 22(21):. PubMed ID: 36366046
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Understanding excessive SNR loss in hearing-impaired listeners.
    Grant KW; Walden TC
    J Am Acad Audiol; 2013 Apr; 24(4):258-73; quiz 337-8. PubMed ID: 23636208
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The prediction of pouch of Douglas obliteration using offline analysis of the transvaginal ultrasound 'sliding sign' technique: inter- and intra-observer reproducibility.
    Reid S; Lu C; Casikar I; Mein B; Magotti R; Ludlow J; Benzie R; Condous G
    Hum Reprod; 2013 May; 28(5):1237-46. PubMed ID: 23482338
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Passive acoustic mapping with absolute time-of-flight information and delay-multiply-sum beamforming.
    Lu S; Su R; Wan C; Guo S; Wan M
    Med Phys; 2023 Apr; 50(4):2323-2335. PubMed ID: 36704970
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Short-lag Spatial Coherence Ultrasound Imaging with Adaptive Synthetic Transmit Aperture Focusing.
    Zhao J; Wang Y; Yu J; Guo W; Zhang S; Aliabadi S
    Ultrason Imaging; 2017 Jul; 39(4):224-239. PubMed ID: 28068874
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Image Noise Removal in Ultrasound Breast Images Based on Hybrid Deep Learning Technique.
    Vimala BB; Srinivasan S; Mathivanan SK; Muthukumaran V; Babu JC; Herencsar N; Vilcekova L
    Sensors (Basel); 2023 Jan; 23(3):. PubMed ID: 36772207
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of Temporal Processing Abilities in Competing Noise.
    Saxena U; Damarla V; Kumar SBR; Chacko G
    Indian J Otolaryngol Head Neck Surg; 2022 Dec; 74(Suppl 3):3604-3609. PubMed ID: 36742707
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coherence-based quantification of acoustic clutter sources in medical ultrasound.
    Long J; Long W; Bottenus N; Trahey G
    J Acoust Soc Am; 2020 Aug; 148(2):1051. PubMed ID: 32873040
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Spatial Coherence Beamformer Design for Power Doppler Imaging.
    Ozgun K; Tierney J; Byram B
    IEEE Trans Med Imaging; 2020 May; 39(5):1558-1570. PubMed ID: 31725374
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of imaging cross-section on visualization of thyroid microvessels using ultrasound: Pilot study.
    Nayak R; Nawar N; Webb J; Fatemi M; Alizad A
    Sci Rep; 2020 Jan; 10(1):415. PubMed ID: 31942039
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Debiasing-Based Noise Suppression for Ultrafast Ultrasound Microvessel Imaging.
    Huang C; Song P; Gong P; Trzasko JD; Manduca A; Chen S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2019 Aug; 66(8):1281-1291. PubMed ID: 31135357
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Converting Coherence to Signal-to-noise Ratio for Enhancement of Adaptive Ultrasound Imaging.
    Hasegawa H; Nagaoka R
    Ultrason Imaging; 2020 Jan; 42(1):27-40. PubMed ID: 31802696
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Speckle noise reduction for ultrasound images by using speckle reducing anisotropic diffusion and Bayes threshold.
    Choi H; Jeong J
    J Xray Sci Technol; 2019; 27(5):885-898. PubMed ID: 31256113
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.