These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 38497491)
1. Low-Pressure Pancake Bouncing on Superhydrophobic Surfaces. Fu Z; Jin H; Zhang J; Xue T; Guo Q; Yao G; Gao H; Wang Z; Wen D Small; 2024 Aug; 20(31):e2310200. PubMed ID: 38497491 [TBL] [Abstract][Full Text] [Related]
2. Bouncing Regimes of Supercooled Water Droplets Impacting Superhydrophobic Surfaces with Controlled Temperature and Humidity. Guo C; Liu L; Yang R; Lu J; Liu S Langmuir; 2023 Jul; 39(29):10199-10208. PubMed ID: 37436938 [TBL] [Abstract][Full Text] [Related]
3. Explosive Pancake Bouncing on Hot Superhydrophilic Surfaces. Liu M; Du H; Cheng Y; Zheng H; Jin Y; To S; Wang S; Wang Z ACS Appl Mater Interfaces; 2021 May; 13(20):24321-24328. PubMed ID: 33998790 [TBL] [Abstract][Full Text] [Related]
4. Theoretical and Experimental Studies on the Controllable Pancake Bouncing Behavior of Droplets. Wu H; Jiang K; Xu Z; Yu S; Peng X; Zhang Z; Bai H; Liu A; Chai G Langmuir; 2019 Dec; 35(52):17000-17008. PubMed ID: 31786923 [TBL] [Abstract][Full Text] [Related]
5. Robust Superhydrophobic Conical Pillars from Syringe Needle Shape to Straight Conical Pillar Shape for Droplet Pancake Bouncing. Song J; Huang L; Zhao C; Wu S; Liu H; Lu Y; Deng X; Carmalt CJ; Parkin IP; Sun Y ACS Appl Mater Interfaces; 2019 Dec; 11(48):45345-45353. PubMed ID: 31651139 [TBL] [Abstract][Full Text] [Related]
6. Large-Area Fabrication of Droplet Pancake Bouncing Surface and Control of Bouncing State. Song J; Gao M; Zhao C; Lu Y; Huang L; Liu X; Carmalt CJ; Deng X; Parkin IP ACS Nano; 2017 Sep; 11(9):9259-9267. PubMed ID: 28841277 [TBL] [Abstract][Full Text] [Related]
7. Effect of geometrical parameters on rebound of impacting droplets on leaky superhydrophobic meshes. Kumar A; Tripathy A; Nam Y; Lee C; Sen P Soft Matter; 2018 Feb; 14(9):1571-1580. PubMed ID: 29355280 [TBL] [Abstract][Full Text] [Related]
8. Pancake bouncing on superhydrophobic surfaces. Liu Y; Moevius L; Xu X; Qian T; Yeomans JM; Wang Z Nat Phys; 2014 Jul; 10(7):515-519. PubMed ID: 28553363 [TBL] [Abstract][Full Text] [Related]
9. Vibration-Induced Pancake Bouncing of Impacting Droplets on Hydrophobic Surfaces. Ren H; Hu X; Wang J; Li N; Chen L Langmuir; 2024 Oct; 40(42):22338-22345. PubMed ID: 39380129 [TBL] [Abstract][Full Text] [Related]
10. Droplet Impact on Superhydrophobic Mesh Surfaces. Chen X; Sun JJ; Zheng SF; Wei BJ; Zhang LZ; Gao SR; Yang YR; Wang XD Langmuir; 2024 Aug; 40(32):17049-17059. PubMed ID: 39083646 [TBL] [Abstract][Full Text] [Related]
11. Pancake bouncing: simulations and theory and experimental verification. Moevius L; Liu Y; Wang Z; Yeomans JM Langmuir; 2014 Nov; 30(43):13021-32. PubMed ID: 25286146 [TBL] [Abstract][Full Text] [Related]
12. Pancake Jumping of Sessile Droplets. Qian C; Zhou F; Wang T; Li Q; Hu D; Chen X; Wang Z Adv Sci (Weinh); 2022 Mar; 9(7):e2103834. PubMed ID: 35032105 [TBL] [Abstract][Full Text] [Related]
13. Regulation of Droplet Rebound Behavior with Contact Time Control on a Flexible and Superhydrophobic Film. Ding S; Dai Z; Chen G; Lei M; Song Q; Gao Y; Zhou Y; Zhou B Langmuir; 2022 Mar; 38(9):2942-2953. PubMed ID: 35200028 [TBL] [Abstract][Full Text] [Related]
14. Light-Caused Droplet Bouncing from a Cavity Trap-Assisted Superhydrophobic Surface. Li W; Lei Y; Chen R; Zhu X; Liao Q; Ye D; Li D Langmuir; 2020 Sep; 36(37):11068-11078. PubMed ID: 32847362 [TBL] [Abstract][Full Text] [Related]
15. Superhydrophobic-like tunable droplet bouncing on slippery liquid interfaces. Hao C; Li J; Liu Y; Zhou X; Liu Y; Liu R; Che L; Zhou W; Sun D; Li L; Xu L; Wang Z Nat Commun; 2015 Aug; 6():7986. PubMed ID: 26250403 [TBL] [Abstract][Full Text] [Related]
16. Droplet impact on superhydrophobic surfaces fully decorated with cylindrical macrotextures. Abolghasemibizaki M; Mohammadi R J Colloid Interface Sci; 2018 Jan; 509():422-431. PubMed ID: 28923739 [TBL] [Abstract][Full Text] [Related]
17. Directional droplet bouncing on a moving superhydrophobic surface. Wang M; Shi Y; Wang S; Xu H; Zhang H; Wei M; Wang X; Peng W; Ding H; Song M iScience; 2023 Apr; 26(4):106389. PubMed ID: 37013191 [TBL] [Abstract][Full Text] [Related]
18. Understanding and Utilizing Droplet Impact on Superhydrophobic Surfaces: Phenomena, Mechanisms, Regulations, Applications, and Beyond. Hu Z; Chu F; Shan H; Wu X; Dong Z; Wang R Adv Mater; 2024 Mar; 36(11):e2310177. PubMed ID: 38069449 [TBL] [Abstract][Full Text] [Related]
19. Water droplet impact on elastic superhydrophobic surfaces. Weisensee PB; Tian J; Miljkovic N; King WP Sci Rep; 2016 Jul; 6():30328. PubMed ID: 27461899 [TBL] [Abstract][Full Text] [Related]
20. Dynamic effects induced transition of droplets on biomimetic superhydrophobic surfaces. Jung YC; Bhushan B Langmuir; 2009 Aug; 25(16):9208-18. PubMed ID: 19441842 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]