These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 38498003)

  • 1. Enhancing Multi-species Liver Microsomal Stability Prediction through Artificial Intelligence.
    Long TZ; Jiang DJ; Shi SH; Deng YC; Wang WX; Cao DS
    J Chem Inf Model; 2024 Apr; 64(8):3222-3236. PubMed ID: 38498003
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting Mouse Liver Microsomal Stability with "Pruned" Machine Learning Models and Public Data.
    Perryman AL; Stratton TP; Ekins S; Freundlich JS
    Pharm Res; 2016 Feb; 33(2):433-49. PubMed ID: 26415647
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In Silico Prediction of Human and Rat Liver Microsomal Stability via Machine Learning Methods.
    Li L; Lu Z; Liu G; Tang Y; Li W
    Chem Res Toxicol; 2022 Sep; 35(9):1614-1624. PubMed ID: 36053050
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of QSAR models for microsomal stability: identification of good and bad structural features for rat, human and mouse microsomal stability.
    Hu Y; Unwalla R; Denny RA; Bikker J; Di L; Humblet C
    J Comput Aided Mol Des; 2010 Jan; 24(1):23-35. PubMed ID: 19937264
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Retrospective assessment of rat liver microsomal stability at NCATS: data and QSAR models.
    Siramshetty VB; Shah P; Kerns E; Nguyen K; Yu KR; Kabir M; Williams J; Neyra J; Southall N; Nguyễn ÐT; Xu X
    Sci Rep; 2020 Nov; 10(1):20713. PubMed ID: 33244000
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural Analysis and Prediction of Hematotoxicity Using Deep Learning Approaches.
    Long TZ; Shi SH; Liu S; Lu AP; Liu ZQ; Li M; Hou TJ; Cao DS
    J Chem Inf Model; 2023 Jan; 63(1):111-125. PubMed ID: 36472475
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Critically Assessing the Predictive Power of QSAR Models for Human Liver Microsomal Stability.
    Liu R; Schyman P; Wallqvist A
    J Chem Inf Model; 2015 Aug; 55(8):1566-75. PubMed ID: 26170251
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Confident application of a global human liver microsomal activity QSAR.
    Stålring J; Sohlenius-Sternbeck AK; Terelius Y; Parkes K
    Future Med Chem; 2018 Jul; 10(13):1575-1588. PubMed ID: 29953260
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The influence of nonspecific microsomal binding on apparent intrinsic clearance, and its prediction from physicochemical properties.
    Austin RP; Barton P; Cockroft SL; Wenlock MC; Riley RJ
    Drug Metab Dispos; 2002 Dec; 30(12):1497-503. PubMed ID: 12433825
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct Comparison of Total Clearance Prediction: Computational Machine Learning Model versus Bottom-Up Approach Using In Vitro Assay.
    Kosugi Y; Hosea N
    Mol Pharm; 2020 Jul; 17(7):2299-2309. PubMed ID: 32478525
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A probabilistic method to report predictions from a human liver microsomes stability QSAR model: a practical tool for drug discovery.
    Aliagas I; Gobbi A; Heffron T; Lee ML; Ortwine DF; Zak M; Khojasteh SC
    J Comput Aided Mol Des; 2015 Apr; 29(4):327-38. PubMed ID: 25708388
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using open source computational tools for predicting human metabolic stability and additional absorption, distribution, metabolism, excretion, and toxicity properties.
    Gupta RR; Gifford EM; Liston T; Waller CL; Hohman M; Bunin BA; Ekins S
    Drug Metab Dispos; 2010 Nov; 38(11):2083-90. PubMed ID: 20693417
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of in silico models for human liver microsomal stability.
    Lee PH; Cucurull-Sanchez L; Lu J; Du YJ
    J Comput Aided Mol Des; 2007 Dec; 21(12):665-73. PubMed ID: 17599241
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Perspectives on the use of machine learning for ADME prediction at AstraZeneca.
    Gawehn E; Greene N; Miljković F; Obrezanova O; Subramanian V; Trapotsi MA; Winiwarter S
    Xenobiotica; 2024 Jul; 54(7):368-378. PubMed ID: 39166404
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting drug metabolism and pharmacokinetics features of in-house compounds by a hybrid machine-learning model.
    Sasahara K; Shibata M; Sasabe H; Suzuki T; Takeuchi K; Umehara K; Kashiyama E
    Drug Metab Pharmacokinet; 2021 Aug; 39():100395. PubMed ID: 33991751
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Non-specific binding of compounds in
    Gardner I; Xu M; Han C; Wang Y; Jiao X; Jamei M; Khalidi H; Kilford P; Neuhoff S; Southall R; Turner DB; Musther H; Jones B; Taylor S
    Xenobiotica; 2022 Aug; 52(8):943-956. PubMed ID: 36222269
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interpretation of machine learning models using shapley values: application to compound potency and multi-target activity predictions.
    Rodríguez-Pérez R; Bajorath J
    J Comput Aided Mol Des; 2020 Oct; 34(10):1013-1026. PubMed ID: 32361862
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of Fraction Unbound in Microsomal and Hepatocyte Incubations: A Comparison of Methods across Industry Datasets.
    Winiwarter S; Chang G; Desai P; Menzel K; Faller B; Arimoto R; Keefer C; Broccatell F
    Mol Pharm; 2019 Sep; 16(9):4077-4085. PubMed ID: 31348668
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Symbolic Regression Model for the Prediction of Drug Binding to Human Liver Microsomes.
    Van Rompaey D; Morrison D; Van Den Bergh A; Wegner JK
    Mol Pharm; 2023 May; 20(5):2436-2442. PubMed ID: 37000176
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimation of ADME properties with substructure pattern recognition.
    Shen J; Cheng F; Xu Y; Li W; Tang Y
    J Chem Inf Model; 2010 Jun; 50(6):1034-41. PubMed ID: 20578727
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.