BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 38498062)

  • 1. Imposing Motion Variability for Ergonomic Human-Robot Collaboration.
    Zolotas M; Luo R; Bazzi S; Saha D; Mabulu K; Kloeckl K; Padır T
    IISE Trans Occup Ergon Hum Factors; 2024; 12(1-2):123-134. PubMed ID: 38498062
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improved Mutual Understanding for Human-Robot Collaboration: Combining Human-Aware Motion Planning with Haptic Feedback Devices for Communicating Planned Trajectory.
    Grushko S; Vysocký A; Oščádal P; Vocetka M; Novák P; Bobovský Z
    Sensors (Basel); 2021 May; 21(11):. PubMed ID: 34070528
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Teleoperator-Robot-Human Interaction in Manufacturing: Perspectives from Industry, Robot Manufacturers, and Researchers.
    Kim S; Hernandez I; Nussbaum MA; Lim S
    IISE Trans Occup Ergon Hum Factors; 2024; 12(1-2):28-40. PubMed ID: 38328969
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ergonomic human-robot collaboration in industry: A review.
    Lorenzini M; Lagomarsino M; Fortini L; Gholami S; Ajoudani A
    Front Robot AI; 2022; 9():813907. PubMed ID: 36743294
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improving Workers' Musculoskeletal Health During Human-Robot Collaboration Through Reinforcement Learning.
    Xie Z; Lu L; Wang H; Su B; Liu Y; Xu X
    Hum Factors; 2024 Jun; 66(6):1754-1769. PubMed ID: 37217443
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Impacts of Human-Cobot Collaboration on Perceived Cognitive Load and Usability during an Industrial Task: An Exploratory Experiment.
    Fournier É; Kilgus D; Landry A; Hmedan B; Pellier D; Fiorino H; Jeoffrion C
    IISE Trans Occup Ergon Hum Factors; 2022; 10(2):83-90. PubMed ID: 35485174
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Digital Twin-Driven Human Robot Collaboration Using a Digital Human.
    Maruyama T; Ueshiba T; Tada M; Toda H; Endo Y; Domae Y; Nakabo Y; Mori T; Suita K
    Sensors (Basel); 2021 Dec; 21(24):. PubMed ID: 34960355
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physiological Indicators of Fluency and Engagement during Sequential and Simultaneous Modes of Human-Robot Collaboration.
    Ramadurai S; Gutierrez C; Jeong H; Kim M
    IISE Trans Occup Ergon Hum Factors; 2024; 12(1-2):97-111. PubMed ID: 38047355
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development and evaluation of design guidelines for cognitive ergonomics in human-robot collaborative assembly systems.
    Gualtieri L; Fraboni F; De Marchi M; Rauch E
    Appl Ergon; 2022 Oct; 104():103807. PubMed ID: 35763990
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multimodal Assessment of Cognitive Workload Using Neural, Subjective and Behavioural Measures in Smart Factory Settings.
    Zakeri Z; Arif A; Omurtag A; Breedon P; Khalid A
    Sensors (Basel); 2023 Nov; 23(21):. PubMed ID: 37960625
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ergonomic assessment of the first assistant during robot-assisted surgery.
    Van't Hullenaar CDP; Bos P; Broeders IAMJ
    J Robot Surg; 2019 Apr; 13(2):283-288. PubMed ID: 30043126
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analyzing the effects of human-aware motion planning on close-proximity human-robot collaboration.
    Lasota PA; Shah JA
    Hum Factors; 2015 Feb; 57(1):21-33. PubMed ID: 25790568
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Handover Control for Human-Robot and Robot-Robot Collaboration.
    Costanzo M; De Maria G; Natale C
    Front Robot AI; 2021; 8():672995. PubMed ID: 34026858
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Human Robot Collaboration for Enhancing Work Activities.
    Liu L; Schoen AJ; Henrichs C; Li J; Mutlu B; Zhang Y; Radwin RG
    Hum Factors; 2024 Jan; 66(1):158-179. PubMed ID: 35345922
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Emotion-Driven Analysis and Control of Human-Robot Interactions in Collaborative Applications.
    Toichoa Eyam A; Mohammed WM; Martinez Lastra JL
    Sensors (Basel); 2021 Jul; 21(14):. PubMed ID: 34300366
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physical human-robot interaction of an active pelvis orthosis: toward ergonomic assessment of wearable robots.
    d'Elia N; Vanetti F; Cempini M; Pasquini G; Parri A; Rabuffetti M; Ferrarin M; Molino Lova R; Vitiello N
    J Neuroeng Rehabil; 2017 Apr; 14(1):29. PubMed ID: 28410594
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Collaborating eye to eye: Effects of workplace design on the perception of dominance of collaboration robots.
    Arntz A; Straßmann C; Völker S; Eimler SC
    Front Robot AI; 2022; 9():999308. PubMed ID: 36237845
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimizing human-robot handovers: the impact of adaptive transport methods.
    Käppler M; Mamaev I; Alagi H; Stein T; Deml B
    Front Robot AI; 2023; 10():1155143. PubMed ID: 37520939
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction of cognitive conflict during unexpected robot behavior under different mental workload conditions in a physical human-robot collaboration.
    John AR; Singh AK; Gramann K; Liu D; Lin CT
    J Neural Eng; 2024 Mar; 21(2):. PubMed ID: 38295415
    [No Abstract]   [Full Text] [Related]  

  • 20. Research on Human-Robot Collaboration Method for Parallel Robots Oriented to Segment Docking.
    Sun D; Wang J; Xu Z; Bao J; Lu H
    Sensors (Basel); 2024 Mar; 24(6):. PubMed ID: 38544010
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.