BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 38498062)

  • 21. A comparison of the psychological effects of robot motion in physical and virtual environments.
    Sanders NE; Xie Z; Chen KB
    Appl Ergon; 2023 Oct; 112():104039. PubMed ID: 37320910
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bidirectional recurrent learning of inverse dynamic models for robots with elastic joints: a real-time real-world implementation.
    Valencia-Vidal B; Ros E; Abadía I; Luque NR
    Front Neurorobot; 2023; 17():1166911. PubMed ID: 37396028
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Human-cobot collaboration's impact on success, time completion, errors, workload, gestures and acceptability during an assembly task.
    Fournier É; Jeoffrion C; Hmedan B; Pellier D; Fiorino H; Landry A
    Appl Ergon; 2024 Sep; 119():104306. PubMed ID: 38714102
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Eye-Tracking in Physical Human-Robot Interaction: Mental Workload and Performance Prediction.
    Upasani S; Srinivasan D; Zhu Q; Du J; Leonessa A
    Hum Factors; 2024 Aug; 66(8):2104-2119. PubMed ID: 37793896
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A Literature Review on Safety Perception and Trust during Human-Robot Interaction with Autonomous Mobile Robots That Apply to Industrial Environments.
    Haney JM; Liang CJ
    IISE Trans Occup Ergon Hum Factors; 2024; 12(1-2):6-27. PubMed ID: 38190192
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The effect of human autonomy and robot work pace on perceived workload in human-robot collaborative assembly work.
    van Dijk W; Baltrusch SJ; Dessers E; de Looze MP
    Front Robot AI; 2023; 10():1244656. PubMed ID: 38023588
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Human Factors Considerations for Quantifiable Human States in Physical Human-Robot Interaction: A Literature Review.
    Abdulazeem N; Hu Y
    Sensors (Basel); 2023 Aug; 23(17):. PubMed ID: 37687837
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Interdisciplinary evaluation of a robot physically collaborating with workers.
    Cherubini A; Navarro B; Passama R; Tarbouriech S; Elprama SA; Jacobs A; Niehaus S; Wischniewski S; Tönis FJ; Siahaya PL; Chini G; Varrecchia T; Ranavolo A
    PLoS One; 2023; 18(10):e0291410. PubMed ID: 37819889
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Factors Affecting Workers' Mental Stress in Handover Activities During Human-Robot Collaboration.
    Lu L; Xie Z; Wang H; Su B; Jung S; Xu X
    Hum Factors; 2024 Jan; ():187208241226823. PubMed ID: 38215357
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An ergonomic comfort workspace analysis of master manipulator for robotic laparoscopic surgery with motion scaled teleoperation system.
    Kang D; Kwon DS
    Int J Med Robot; 2022 Dec; 18(6):e2448. PubMed ID: 35986717
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Analysis of the Impact of Human-Cobot Collaborative Manufacturing Implementation on the Occupational Health and Safety and the Quality Requirements.
    Pauliková A; Gyurák Babeľová Z; Ubárová M
    Int J Environ Res Public Health; 2021 Feb; 18(4):. PubMed ID: 33671204
    [TBL] [Abstract][Full Text] [Related]  

  • 32. E-worker postural comfort in the third-workplace: An ergonomic design assessment.
    Eldar R; Fisher-Gewirtzman D
    Work; 2020; 66(3):519-538. PubMed ID: 32623415
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A Human-Following Motion Planning and Control Scheme for Collaborative Robots Based on Human Motion Prediction.
    Khawaja FI; Kanazawa A; Kinugawa J; Kosuge K
    Sensors (Basel); 2021 Dec; 21(24):. PubMed ID: 34960323
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The Role of Coherent Robot Behavior and Embodiment in Emotion Perception and Recognition During Human-Robot Interaction: Experimental Study.
    Fiorini L; D'Onofrio G; Sorrentino A; Cornacchia Loizzo FG; Russo S; Ciccone F; Giuliani F; Sancarlo D; Cavallo F
    JMIR Hum Factors; 2024 Jan; 11():e45494. PubMed ID: 38277201
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A Review on Human Comfort Factors, Measurements, and Improvements in Human-Robot Collaboration.
    Yan Y; Jia Y
    Sensors (Basel); 2022 Sep; 22(19):. PubMed ID: 36236530
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Trends of Human-Robot Collaboration in Industry Contexts: Handover, Learning, and Metrics.
    Castro A; Silva F; Santos V
    Sensors (Basel); 2021 Jun; 21(12):. PubMed ID: 34203766
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Intuitive Spatial Tactile Feedback for Better Awareness about Robot Trajectory during Human-Robot Collaboration.
    Grushko S; Vysocký A; Heczko D; Bobovský Z
    Sensors (Basel); 2021 Aug; 21(17):. PubMed ID: 34502639
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Prediction-Based Human-Robot Collaboration in Assembly Tasks Using a Learning from Demonstration Model.
    Zhang Z; Peng G; Wang W; Chen Y; Jia Y; Liu S
    Sensors (Basel); 2022 Jun; 22(11):. PubMed ID: 35684900
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Does the introduction of a cobot change the productivity and posture of the operators in a collaborative task?
    Bouillet K; Lemonnier S; Clanche F; Gauchard G
    PLoS One; 2023; 18(8):e0289787. PubMed ID: 37556492
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Development of an Integrated Virtual Reality System with Wearable Sensors for Ergonomic Evaluation of Human-Robot Cooperative Workplaces.
    Caporaso T; Grazioso S; Di Gironimo G
    Sensors (Basel); 2022 Mar; 22(6):. PubMed ID: 35336584
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.