BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 38498132)

  • 21. Deeply supervised 3D fully convolutional networks with group dilated convolution for automatic MRI prostate segmentation.
    Wang B; Lei Y; Tian S; Wang T; Liu Y; Patel P; Jani AB; Mao H; Curran WJ; Liu T; Yang X
    Med Phys; 2019 Apr; 46(4):1707-1718. PubMed ID: 30702759
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Multi-atlas pancreas segmentation: Atlas selection based on vessel structure.
    Karasawa K; Oda M; Kitasaka T; Misawa K; Fujiwara M; Chu C; Zheng G; Rueckert D; Mori K
    Med Image Anal; 2017 Jul; 39():18-28. PubMed ID: 28410505
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Head and neck multi-organ segmentation on dual-energy CT using dual pyramid convolutional neural networks.
    Wang T; Lei Y; Roper J; Ghavidel B; Beitler JJ; McDonald M; Curran WJ; Liu T; Yang X
    Phys Med Biol; 2021 May; 66(11):. PubMed ID: 33915524
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Lung tumor segmentation in 4D CT images using motion convolutional neural networks.
    Momin S; Lei Y; Tian Z; Wang T; Roper J; Kesarwala AH; Higgins K; Bradley JD; Liu T; Yang X
    Med Phys; 2021 Nov; 48(11):7141-7153. PubMed ID: 34469001
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Recurrent Saliency Transformation Network for Tiny Target Segmentation in Abdominal CT Scans.
    Xie L; Yu Q; Zhou Y; Wang Y; Fishman EK; Yuille AL
    IEEE Trans Med Imaging; 2020 Feb; 39(2):514-525. PubMed ID: 31352338
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Multiscale Local Enhancement Deep Convolutional Networks for the Automated 3D Segmentation of Gross Tumor Volumes in Nasopharyngeal Carcinoma: A Multi-Institutional Dataset Study.
    Yang G; Dai Z; Zhang Y; Zhu L; Tan J; Chen Z; Zhang B; Cai C; He Q; Li F; Wang X; Yang W
    Front Oncol; 2022; 12():827991. PubMed ID: 35387126
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Improving the slice interaction of 2.5D CNN for automatic pancreas segmentation.
    Zheng H; Qian L; Qin Y; Gu Y; Yang J
    Med Phys; 2020 Nov; 47(11):5543-5554. PubMed ID: 32502278
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Automatic segmentation of the clinical target volume and organs at risk in the planning CT for rectal cancer using deep dilated convolutional neural networks.
    Men K; Dai J; Li Y
    Med Phys; 2017 Dec; 44(12):6377-6389. PubMed ID: 28963779
    [TBL] [Abstract][Full Text] [Related]  

  • 29. An application of cascaded 3D fully convolutional networks for medical image segmentation.
    Roth HR; Oda H; Zhou X; Shimizu N; Yang Y; Hayashi Y; Oda M; Fujiwara M; Misawa K; Mori K
    Comput Med Imaging Graph; 2018 Jun; 66():90-99. PubMed ID: 29573583
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Multi-scale Selection and Multi-channel Fusion Model for Pancreas Segmentation Using Adversarial Deep Convolutional Nets.
    Li M; Lian F; Guo S
    J Digit Imaging; 2022 Feb; 35(1):47-55. PubMed ID: 34921356
    [TBL] [Abstract][Full Text] [Related]  

  • 31. MFCNet: A multi-modal fusion and calibration networks for 3D pancreas tumor segmentation on PET-CT images.
    Wang F; Cheng C; Cao W; Wu Z; Wang H; Wei W; Yan Z; Liu Z
    Comput Biol Med; 2023 Mar; 155():106657. PubMed ID: 36791551
    [TBL] [Abstract][Full Text] [Related]  

  • 32. MAD-UNet: A deep U-shaped network combined with an attention mechanism for pancreas segmentation in CT images.
    Li W; Qin S; Li F; Wang L
    Med Phys; 2021 Jan; 48(1):329-341. PubMed ID: 33222222
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Automated pancreatic segmentation and fat fraction evaluation based on a self-supervised transfer learning network.
    Zhang G; Zhan Q; Gao Q; Mao K; Yang P; Gao Y; Wang L; Song B; Chen Y; Bian Y; Shao C; Lu J; Ma C
    Comput Biol Med; 2024 Mar; 170():107989. PubMed ID: 38286105
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A skeleton context-aware 3D fully convolutional network for abdominal artery segmentation.
    Zhu R; Oda M; Hayashi Y; Kitasaka T; Misawa K; Fujiwara M; Mori K
    Int J Comput Assist Radiol Surg; 2023 Mar; 18(3):461-472. PubMed ID: 36273078
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Deep learning of the sectional appearances of 3D CT images for anatomical structure segmentation based on an FCN voting method.
    Zhou X; Takayama R; Wang S; Hara T; Fujita H
    Med Phys; 2017 Oct; 44(10):5221-5233. PubMed ID: 28730602
    [TBL] [Abstract][Full Text] [Related]  

  • 36. AnatomyNet: Deep learning for fast and fully automated whole-volume segmentation of head and neck anatomy.
    Zhu W; Huang Y; Zeng L; Chen X; Liu Y; Qian Z; Du N; Fan W; Xie X
    Med Phys; 2019 Feb; 46(2):576-589. PubMed ID: 30480818
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Technical and Clinical Factors Affecting Success Rate of a Deep Learning Method for Pancreas Segmentation on CT.
    Bagheri MH; Roth H; Kovacs W; Yao J; Farhadi F; Li X; Summers RM
    Acad Radiol; 2020 May; 27(5):689-695. PubMed ID: 31537506
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Graph-enhanced U-Net for semi-supervised segmentation of pancreas from abdomen CT scan.
    Liu S; Liang S; Huang X; Yuan X; Zhong T; Zhang Y
    Phys Med Biol; 2022 Jul; 67(15):. PubMed ID: 35892477
    [No Abstract]   [Full Text] [Related]  

  • 39. PA-ResSeg: A phase attention residual network for liver tumor segmentation from multiphase CT images.
    Xu Y; Cai M; Lin L; Zhang Y; Hu H; Peng Z; Zhang Q; Chen Q; Mao X; Iwamoto Y; Han XH; Chen YW; Tong R
    Med Phys; 2021 Jul; 48(7):3752-3766. PubMed ID: 33950526
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A robust and automatic CT-3D ultrasound registration method based on segmentation, context, and edge hybrid metric.
    He B; Zhao S; Dai Y; Wu J; Luo H; Guo J; Ni Z; Wu T; Kuang F; Jiang H; Zhang Y; Jia F
    Med Phys; 2023 Oct; 50(10):6243-6258. PubMed ID: 36975007
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.